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Abstract

The pro-inflammatory cytokines IFN-vy, TNF-a and IL-18 are an essen-
tial part of macrophage polarization and of the inflammatory response in
macrophages. Macrophages remove cellular debris, foreign substances and
microbes in a process called phagocytosis, and are a vital part of the immune
system. However, for various unknown reasons, the inflammatory response
can get activated by substances and tissue normally present in the body,
which in many cases leads to chronic inflammation. This is the case in mul-
tiple sclerosis (MS), a so called autoimmune disease, in which macrophages
remove the isolating myelin-layer from axons in the central nervous system
(CNS), resulting in plaques. But different types of MS result in different
plaque patterns, as well as different sizes of the plaques. In this thesis using
a mathematical model I wish to address the questions: What limits plaque
size in MS? Under which circumstances is plaque formation possible? And
how is inflammation resolved?

In this thesis I focus on pro-inflammatory macrophages, the activation of
NF-xB, and the chemotactic movement of macrophages. I therefore neglect
T-cells, the recruitment and polarization of M1 macrophages, as well as
anti-inflammatory M2 macrophages and their effects. These assumptions
simplify the complex processes of the inflammatory response, resulting in
a simpler model for inflammation in macrophages. I apply and modify a
model previously developed for the inflammatory response in neutrophils to
fit a system of macrophages. Furthermore, I introduce macrophage motility.
The model has two free parameters p and S, where p is a cytokine production
rate, and S is a basal cytokine production level. A mathematical analysis of
the model shows that a single macrophage is bistable given that p exceeds
a threshold level.

Based on simulations I show that macrophages can accumulate into
plaques, and that the number of plaques and their size depends on the
diffusion constant, the parameter p, and the number of macrophages. 1
find a linear relation between the diffusion constant and the average plaque
size, when p is low, as well as a linear relation between the average plaque
size and the number of macrophages, when p is high. Furthermore I show
that there is a qualitative differences between a low p system and a high
p system. Inspired by the study by [Starossom et al., 2012] which shows
that plaques can be resolved by introducing GAL1, an inhibitor of the NF-
kB activation, I also show possible ways one could resolve plaques through
NF-xB activator inhibition or cytokine inhibition.



Resumé

De pro-inflammatoriske cytokiner IFN-v, TNF-a og IL-15 er en essentiel
del af makrofag-polarisering og af den inflammatoriske respons i makrofa-
ger. Makrofager fjerner cellerester, fremmede stoffer og mikrober igennem
en proces kaldet fagocytose, og er en vital del af immunforsvaret. Men af
forskellige ukendte arsager kan det inflammatoriske respons blive aktiveret
af stoffer og vaev some normalt findes i kroppen. Dette er tilfeeldet i multipel
sklerose (MS), en sakaldt autoimmun sygdomme, som er rettet mod central-
nervesystemet (CNS) og hvor makrofager fjerner det isolerende myelin-lag
fra axonerne, og hvor resultatet er formationen af plaques. Men forskellige
typer af MS resulterer i forskellige plaque mgnstre, og forskellige stgrrelser
af plaques. I denne athandling vil jeg ved brug af en matematisk model
prove at finde svar pa spgrgsmal som: Hvad afgreenser plaque stgrrelse i
MS? Under hvilke omsteendigheder er formationen af plaques mulig? Og
hvordan oplgses plaques?

I denne athandling fokuserer jeg pa de pro-inflammatoriske makrofager,
aktiveringen af NF-xB, og makrofagers kemotaktiske bevaegelse. Jeg neg-
ligerer derfor T-celler, rekruteringen og polariseringen af M1 makrofager,
samt de anti-inflammatoriske M2 makrofager og deres effekt. Disse anta-
gelser simplificerer de komplekse processer som udggr det inflammatoriske
respons. Dette resulterer i en simplere model for inflammation i makrofager.
Jeg anvender og modificerer en tidligere model, udviklet til det inflammato-
riske respons i neutrofiler, til at passe til et system af makrofager. Derudover
tilfgjer jeg makrofagerne motilitet. Modellen har to frie parametre p og S,
hvor p er en cytokin produktions rate og S er en basal cytokin produktion.
En matematisk analyse af modellen viser at en enkelt makrofag er bistabil
givet at p er over en graenseveerdi. Baseret pa simuleringer viser jeg at ma-
krofager kan samle sig i plaques, og at antallet af plaques og deres stgrrelse
afheenger af diffusions konstanten, parameteren p, og antallet af makrofager.
Jeg finder en linezer relation mellem diffusions konstanten og den gennem-
snitlige plaque storrelse, nar p er lav, og mellem den gennemsnitlige plaque
storrelse og antallet af makrofager, nar p er hgj. Derudover viser jeg at der
er en kvalitativ forskel pa et system med lav p og et system med hgj p.
Inspireret af undersggelsen af [Starossom et al., [2012], som viser at plaques
kan oplgses ved at introducere GALI, en inhibitor af NF-xB aktiveringen,
viser jeg ogsa mulige mader at oplgse plaques pa gennem NF-xB aktivator
inhibering eller cytokin inhibering.
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Introduction

“Make things as simple as possible, but not simpler”
— Albert Einstein

Autoimmune diseases occur when the body’s immune system is no longer
able to distinguish between healthy tissue and antigens. The result is that
the immune system starts targeting healthy tissue, triggering an inflamma-
tory response. This can result in a never ending battle between the immune
system trying to both destroy and repair the tissue, and in many cases
the result is fatal. Autoimmune diseases are estimated to be among the
leading causes of death among women in all age groups up to 65 years.
Of the autoimmune diseases that target the central nervous system (CNS),
multiple sclerosis (MS) is the most common. In MS, the immune system
targets myelin and oligodendrocytes resulting in scarred areas of the brain
called plaques. As of 2008 it was estimated that between 2 and 2.5 million
people, were affected by this disease, that the disease is more prevalent in
colder countries, and that the ratio between women and men with MS is
2:1{World Health Organization et al., 2008]. To date the pathogenesis of
MS is unknown, however, it has been shown that both environment and
genetics play a big role|Compston and Coles, 2008]. Knowledge of the pro-
cesses at work in MS are therefore very interesting and any model giving
insight into the mechanics of the disease may aid in the understanding and
development of better treatment methods.

Modeling of the regulatory network of NF-xB has been done previously
[Holst-Hansen; |Jensen and Krishnay [2012; [Yde et al., [2011alb,b], but none
of them have looked at the behavior of a motile excitable media and its
application to disease modeling. Therefore, combining previous work with
knowledge of the inflammatory response in MS, a model — incorporating

Myelin

Myelin is a material
consisting of 75 — 80%
lipids and covers areas
of the axons and who’s
main function is to
increase propagation

speeds of neural signals

Oligodendrocytes
Oligodendrocytes are

a type of neuroglia,
which main function is
to provide insulation in
the form of myelin to

axons in the CNS
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Figure 1.1: Macrophages removing the isolating myelin-layer from the axons and killing
the myelin-producing oligodendrocytes.

the bistable nature of inflammatory cells — will be applied to a system of
macrophages. The macrophages will be modeled as cellular automatons on
a quadratic two dimensional grid and the intracellular NF-xB regulatory
network will be modeled by a set of three coupled differential equations.
The system is analyzed as a motile excitable medium, where neighboring
cells are coupled through diffusion. Parameter settings will be adjusted to
model phenomenological observations of plaque (scar-like area of the CNS
consisting demyelinated neurons) sizes, diffusion, and macrophage motility
in both healthy and inflamed tissud'|

In MS, macrophages, T-cells and a multitude of other cells are re-
cruited to the lesion site. When macrophages aggregate the extracellu-
lar environment will have an effect on how they react. In early stages of
MS macrophage reaction will be pro-inflammatory and they start demyeli-
nating the neurons and the oligodendrocytesﬂ With time this results in
gliosis, which is the development of glial scar tissue that is nonresponsive
to remyelination. This glial scar is called a plaque, and they are usually
limited in sizdﬂ. This leads to the first question this study sets out to

IMany of the physiological values found in articles regarding MS, like macrophage
movement speed, diffusion constant of various cytokines, and production rate of cy-
tokines have been found through in vitro experiments because the technical tools for
measurements of these values in the CNS currently aren’t good enough or haven’t been
developed. Given this knowledge, many of the simulations will be run from a lower to
an upper bound, for some of the most important parameters in the system.

2This is a very simplified explanation of a very complex process. A more detailed
explanation of this process is given in Chapter

3In fulminant multiple sclerosis, which is a borderline form of MS, one develops a large
lession that with time can extend to the entirety of the brain[Dimitri P. Agamanolis, [2014]




answer: what limits plaques from growing infinitely? This will be
answered by simulations to show that the inflammatory process produces a
macrophage free zone effectively isolating the inflammation from attracting
more macrophages. The second question, which can be thought of as a
follow-up to the first one, is: why do macrophages that have gathered
stay in this plaque, and what does it take to dissolve them?. This
will be analyzed with simulations, to show that the most efficient way to
dissolve plaques is to inhibit the NF-xB activation by lowering k;5. The
study will also show that plaque size is proportional to the diffusion con-
stant D and p, and the number of macrophages.

This study will start with an introduction to the central nervous system
and how it is affected by MS. Possible disease pathways will be explored,
and macrophages, one of the mediators of inflammation in MS, will be
thoroughly explained. The role of NF-xB in the inflammatory process in
macrophages will be explained along with the some of the pro-inflammatory
cytokines and their role in the regulatory network that perpetuates inflam-
mation. Having described the biological processes and framework, a previ-
ously published model will be applied to a system of motile macrophages.
Using the model, I will look at the effects of low and high diffusion, p, and
number of macrophages, as well as investigate the stability of plaques un-
der various conditions, and excitability of the system under various initial
conditions. The results of the simulations and their implications will be
discussed and the study will end with a conclusion and outlook.






2

Central Nervous System and

Multiple Sclerosis

“Any fool can know. The point is to understand.”
— Albert Einstein

Multiple Sclerosis is a demyelinating disease that affects the CNS. Knowl-
edge of the CNS, and the effectors of MS is therefore vital in understanding
how a mathematical and computational model can be applied to this sys-
tem. This chapter will start with an introduction to the CNS and its main
functions, and how MS and the inflammatory process affects it. A brief
overview over the disease and its progression patterns will be given, and
some hypothesis on the pathogenesis of MS will be introduced. The chap-
ter will end with macrophages’ role in MS, and their activation process, as
these are a central part of the model.

2.1 The Central Nervous System

The central nervous system is the part of the nervous system consisting of
the brain and the upper spinal cord, extending from the base of the skull
to the first lumbar verterbra figure 2.1 The main function of the spinal
cord is the transmission of neural signal between the brain and the body.
Most notably the CNS has a complex network of neurons, consisting of on
average 86 billion neurons [Azevedo et al., 2009; Herculano-Houzel, 2009]
each connected to several thousand other neurons by synapses.
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Spinal Cord

Spine |

Figure 2.1: Central Nervous System. By Patrick J. Lynch, medical illustrator (Patrick
J. Lynch, medical illustrator) [CC BY 2.5 (http://creativecommons.org/licenses/
by/2.5)], via Wikimedia Commons. Author modified two original illustrations and added
text.

The most important function of the CNS w.r.t. this study is the trans-
mission of signals from one region of the brain to another region in either
the brain or body. The transmission of signals is done by neurons through
neruonal signalling, where the neurons produce an electrical signal that is
transmitted via synapses. In some diseases, specifically demyelinating dis-
eases, the transmission of signal is slowed by the removal of myelin from
the neurons, whose function is to improve propagation speed of the signal.
This is done through a process called saltatory conduction, where the sig-
nal "hops” from one node of Ranvier to another increasing the propagation
speed from 2 m/s to 200 m/s. The removal of myelin from the neurons
therefore has a huge effect on how signal is transmitted, and the severity
of demyelinating diseases range from mild, person doesn’t know he has the
demyelinating disease, to severe, person has impaired muscle coordination,
blurred vision etc., to lethal, the person dies. Demyelinating diseases are
caused by autoimmune responses, infections, genetics and some by unknown
factors. The most common of the demyelinating autoimmune disease which
affect the CNS is multiple sclerosis [World Health Organization et al., 2008].
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2.2 Multiple Sclerosis

Multiple sclerosis, also known as encephalomyelitis disseminataﬂ (encephalo
- term for diseases affecting the brain; myelitis - term for diseases affecting
the spinal cord) is the most common autoimmune disease affecting the cen-
tral nervous system. It is a demyelinating autoimmune disease that, due
to the randomely attacked locations, has a wide range of signs and symp-
toms, including physical, mental and psychiatric problems. However, MS is
accepted to take on several forms, which are differentiable by the duration,
aggresivity and relapse time of the demyelinating attacks. Four patterns of
progression,

e Relapsing-remitting (RRMS),
e Secondary-progressive (SPMS),
e Primary-progressive (PPMS),
e Progressive-relapsing (PRMS),

were described by the National Multiple Sclerosis Society in 1966 |Lublin
et al., |1996] and have subsequently been used for diagnosing and treating
patients. There are other types of MS that have been described, but the
debate on whether these really are variants of MS or if they are entirely
different diseases is still ongoing [Poser and Brinar, 2007; [Wingerchuk and
Lucchinetti, 2007].

The pathogenesis of MS is still unknown, but geographic locations and
genetics have been shown to be correlated to the frequency of MS cases
[Compston and Coles, 2008]. A widely accepted hypothesis, is that a
dialogue between T-cell receptors (TCR) on CD4+ T-lymphocytes with
myelin antigens presented by class II major histocompatibility complex
(MHC) expressed on macrophages/microglia, leads to an immune attack
on the myelin-oligodendrocyte complex and an interruption of the blood
brain barrier (BBB): "Ezposure of endothelium to pro-inflammatory cy-
tokines (IFN-y, TNF-o and IL-13) interrupts the BBB by disorganizing
cell-cell junctions, decreases the brain solute barrier, enhances leukocyte en-
dothelial adhesion and migration as well as increases expression of class I1
MHC' and promotes shedding of endothelial ‘microparticles’ (EMP).” |Mi-
nagar and Alexander, 2003]. Another hypothesis, is that MS is caused by
an infectious and viral agent. No clear association with any particular viral
pathogen has been found, but some, including human herpevirus 6 (HHV-6)

! According to a review article from 2007, MS and DEM are two distinct diseases
[Poser and Brinar, 2007]



T2W

T2-weighted images are
MRI images where a
spin-spin relaxation has
been introduced. Sim-
ply put a T2-weighted
image is created by al-
lowing magnetization to
decay before measuring

the MR signal.

FA-maps

Fractional anisotropy
is a measure one can
compute from the dif-
fusion tensor, which is
computed from vector
algorithms on a diffu-

sion tensor image.

EDSS

The EDSS goes from
0.0 to 10.0 with 0.0
being normal neurolog-
ical exam, 1 being no
disability, and minimal
signs on one Functional
System, and 10.0 being
death due to MS.
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Figure 2.2: TI1WI: Multiple enhancing lesions. Retrieved 19, February, 2015, from
http://www.radiologyassistant.nl/en/p4556dea65db62/multiple-sclerosis.
html

have been implicated on basis of the presence of HHV-6 DNA and antibod-
ies in the blood and cerebral spinal fluid (CSF) of MS patients |[Brogden and
Guthmiller, [2002; (Gilden et al., |2007]. However, HHV-6 is only found in a
minority of MS patients, and elevated levels of HHV-6 DNA and antibodies
are also seen in patients with other neurological diseases [Gilden et al., 2007].

RRMS, present in > 80% MS patients, is characterized by the onset of
attacks, followed by periods of varying length of remission. In the attacks,
myelin is removed from the neurons, some times resulting in astroglial scars
called plaques. This is not always the immediate case though and MS le-
sions sometimes recover to full function before another attack. The plaques
are usually multiple with an average plaque size of 72421 mm? using T2W
imaging and 91 4+ 35 mm? using FA-maps [Kealey et al., [2005]. They are
randomly distributed and have a predilection for the periventricular white
matter, optic nerves, and spinal cord but spare no part of the CNS [Brownell
and Hughes|, 1962]. They may involve gray matter such as cerebral cortex,
deep nuclei, and brainstem. In these locations, they involve myelinated ax-
ons while sparing the neuronal bodies [Agamanolis].

Though no cure has yet been developed for MS, ongoing trials are re-
searching the possibility of curing it with hematopoietic stem cell trans-
plantation [Burt et al.| 2015; Nash et al., |2014]. The results so far have
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been promising and patients have an improvement in extended disability
state scale (EDSS) score > 1, with a mean EDSS of about 4 at the start of
the trial and about 3.1 after 5 years[Burt et al., 2015]. Other approaches
to MS treatment include reducing T-and B-cell activation, proliferation,
and function in response to autoantigens [O’Connor et al., [2011], induction
of antigen-specific tolerance through myelin peptide skin patches|Walczak
et all 2013], and inhibition of pro-inflammatory cytokines through anti-
cytokine antibodies [Ruuls and Sedgwick, [1998], all with varying degree of
succes.

2.2.1 MS & Inflammation

After the onset of MS and before the first signs of disease become visi-
ble, a set of complex processes interact to start the inflammatory process.
The simplest way it can be explained, whilst still informing about the pro-
cesses vital to the development of the model is this: (1) TCRs on CD4+
T-lymphocytes interact with myelin antigens presented by class I MHC ex-
pressed on monocytes (macrophages/microglia), (2) T-lymphocytes start
secreting cytokines — most notably interleukin-2 (IL-2) and interferon-v
(IFN-v) — and chemokines (a family of small cytokines, whose name de-
rives from their ability to induce directed chemotaxis|Groves and Jiang,
1995]). This resutls in a chemotactic response from monocytes, and a pro-
inflammatory polarization of macrophages, as well as an interruption of
the BBB, (3) recruited pro-inflammatory monocytes and toxic cytokines
start degrading myelin and oligodendrocytes, (4) demyelination and degra-
dation of myelin and oligodendrocytes activates the recruitment of reactive
astrocytes, which are capable of recruiting both T,1 and T;2 (an anti-
inflammatory differentiation of the naive T helper cell) cells through the
secretion of IL-12 and IL-4 respectively, (5) pro- and anti-inflammatory
monocytes and T-lymphocytes get recruited, differentiating into a pheno-
type decided by the cytokine environment, (6) reactive astrocytes react to
the degradation of myelin and neurons by isolating the neurons, resulting in
astrogliosis that may, if severe enough, result in inhibition of remyelination
and neuronal regrowth.

TCR

The TCR or T cell re-
ceptor is a heterodimer
found on the surface of
T-lymphocytes, and is
responsible for recogniz-
ing antigens presented
by the major histo-
compatibility complex

(MHC) molecules.

MHC class II

Major histocompati-
bility complex class II
molecules are a cen-
tral part of the antigen
presentation process of
macrophages. They
are loaded by the
macrophages through
the process of phagocy-

tosis.
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Figure 2.3: Simplified disease development scheme.

The interaction network this study sets out to analyze is a simplified
version of the recruitment and cellular interactions seen in figure[2.3|focusing
on the aggragation and interactions of macrophages.

2.2.2 Role of Macrophages in MS

Macrophages, and microglia are phagocytes responsible for ingesting (phago-
cytosing) harmful foreign particles, bacteria, and dead or dying cells. Gener-
ally speaking, the two are genetically distinct myeloid populations. Macrophages,
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being derived from hematopoietic stem cells in the bone marrow, circulate
the peripheral vasculature, and are 30 —80% of the phagocyte population in
advanced active plaques with partial or complete myelin loss|Li et al., [1996].
Microglia (resident macrophages of the brain) originate from erythromyeloid
precursors in the embryonic yolk sac and are 60% of the phagocyte popula-
tion in early active MS plaques|Ginhoux et al., 2010; Kierdorf et al.,[2013} |Li
et al.}[1996]. In inflammation, they have dual roles, being both pro-and anti-
inflammatory or immunoregulatory, depending on the differentiation into ei-
ther M1 (pro-inflammatory) or M2 (anti-inflammatory/immunoregulatory)
macrophages, where M1/M2 was chosen to follow the T,1/T,2 nomen-
clature |Martinez and Gordon, [2014]. The exposure to IFN-y drives M1
polarization |[Martinez et al., 2009], inducing a cytotoxic and antitumoral
environment, while the exposure to IL-4 drives M2 polarization [Stein et al.)
1992|, inducing an immunoregulatory environment. Though the M1 pheno-
type is known to be pro-inflammatory, myelin laden macrophage, also known
as a foam cells, have an intermediate activation status/Vogel et al. [2013], ex-
pressing both M1 and M2 markers, or are actually anti-inflammatory [Boven
et al.| [2006] depending on the source.

Benefits of Macrophages/Microglia in MS

Macrophages, in addition to recruiting reactivating T cells, have been shown
to promote the survival of neurons, functional recovery and nerve regener-
ation|Rapalino et al., [1998]. Macrophages/microglia are also responsible
for the removal of myelin debris and reparation of lesions, and studies
decreasing microglial activity were shown to actually increase demyelina-
tion, delay remyelination and impair oligodendrocyte precursor cell prolif-
eration|Skripuletz et al., 2013].

Detrimental effects of Macrophages/Microglia in MS

On the other hand macrophages/microglia have also been observed to strip
myelin, as well as kill neurons and oligodendrocyte progenitor cells (OPCs)
[Merrill and Zimmerman, 1991; Peterson et al., [2002; [Takeuchi et al., [2005].
When macrophages/microglia are activated, they release an array of in-
flammatory cytokines, such as TNF-a and IFN-v. These cytokines induce
the release of glutamate. Excessive glutamate stimulation on N-methyl-
D-aspartate (NMDA) receptors results in mitochondrial death and ulti-
mately excitotoxic neuronal and oligodendrocyte death [Takeuchi et al.
2005]. When glutamate release is blocked, EAE progression is attenuated,
providing evidence for glutamate excitotoxicity as a plausible mechanism
for macrophage/microglia-mediated toxicity [Shijie et al., [2009]. In addi-

Macrophages
Macrophages are re-
ported to have a lifes-
pan ranging from days
to weeks |Weischen-
feldt and Porse} 2008],
a diameter of 21 ym
|Krombach et al., [1997]
and a movement speed
ranging from 10.8 ym/h
|Vereyken et al. 2011)
to 600 um/h [Pixley,
2012 depending on

source and location.
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tion to stimulating the release of glutamate, pro-inflammatory cytokines
and chemokines promote inflammation and antigen presentation, thereby
mediating the recruitment and reactivation of T cells to the lesion [Bauer:
et al., |1995]. Finally, the release of free radicals, such as nitric oxide (NO),
has been shown to induce oxidative damage to neurons and oligodendrocyte
precursor cells [Reynolds et al., 2007].[Rawji and Yong, |2013]

2.2.3 The NF-xB Activation Process

The activation of M1 macrophages, induces an auto-regulatory feedback
loop, where the nuclear factor kappa-light-chain-enhancer of activated B
cells, otherwise known as NF-xB is a central part. NF-xB is a protein com-
plex that controls transcription of DNA and is found in almost all mam-
malian cells. NF-xB has an active an a passive state, and is said to be
passive when it is bound to the inhibitor IxB (inhibitor of xB). Active NF-
kB is free to move into the nucleus and turn on the expression of specific
genes. NF-kB is activated by many different stimuli, including cytokines,
activators of protein kinase C (PKC), viruses and oxidants and acts as a cen-
tral regulator of the innate and adaptive immune response, cell proliferation
and apoptosis[Epstein et al., [1997; |Satoh et al., 2007]. There are currently
over 150 target genes for NF-xB identified [Pahl, 1999; Satoh et al., 2007].
A significant subset of these, including inflammatory cytokines TNF-a and
IL-153, activate the expression of NF-xB. Though NF-xB is self-activating it
also induces the transcription of A20, an inhibitor of the IxB Kinase (IKK)
— an enzyme complex that through phosphorylation of the IkBa protein,
upregulates NF-xB. Furthermore active NF-xB also turns on the expression
of its own repressor IxBa, which binds to NF-«B terminating the transcrip-
tion resulting in an auto-regulatory loop that amplifies and perpetuates
inflammation |Biswas and Mantovani, 2010; [Epstein et al. [1997]. It has
been hypothesized that the aberrant regulation of the complex transcrip-
tional factor NF-xB contributes to the development of pathogenic T cells in
MS [Satoh et al., [2007] and it has been implicated in several autoimmune
diseases and cancers|Boston University Biology, 2014].
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Cellular interactio
Cytotoxicity

Figure 2.4: NF-xB auto-regulatory feedback loop inspired by [[Biswas and Mantovani],
. The process starts with the binding of cytokines like IFN-y, TNF-«, or IL-13 onto
M1 receptors. The receptor recruits Janus kinase adaptors, MyD88, and TRIF, inducing
activation of the transcription factor NF-x£B through the phosphorylation of the NF-xB-
IxB complex by the IKK. This leads to the transcription of M1 genes, upregulating the
production of pro-inflammatory cytokines like IL-12, TNF, and IL-13, but also to the
transcription of A20, an inhibitor of IKK, and more importantly IxBa. This activation
results in a positive regulatory loop that amplifies and perpetuates inflammation|Biswas
land Mantovanil 2010} [Epstein et al., [1997].
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3

Modeling Macrophages

“To be, or not to be — that is the essence of bistability.”
— Rogvi David Arge

Models of MS have been made with various approaches, some modeling it
as an undirected fixed radius random graph[Mohan et al. 2008|, and some,
modeling bald’s sclerosis, choosing to model it with a chemotactic approach,
because of the formation of concentric patterns in the disease, and the for-
mation of Liesegang rings in post-nucleation theories|Khonsari and Calvez,
2007]. In modeling MS, I had to chose between using Tj1 cells as the
cells that perpetuate inflammation or using M1 macrophages. It has been
shown that injection of autoimmune T cells into genetically susceptible ani-
mals induces experimental allergic/autoimmune enchephalomyelitis (EAE),
which is an animal model of MS[Martin et al., [1992]. But due to initial
suggestions, and due to evidence that the inactivation or downregulation of
M1 macrophages, through mechanisms involving p38-, NF-xB-dependent
signaling pathways, can result in resolving plaques|[Starossom et al. 2012],
this study focuses on adapting and applying a previously developed model
using M1 macrophages as the main inflammatory cell.

In this chapter, a previous model of the interaction between cytokines
and NF-xB will be modified and applied to a system of macrophages. The
mathematical model will be explained and central terms in the model will
be developed to give an understanding of them. The model and the bio-
logical system will be compared, to give argument for its applicability, and
a comparison between the model and more general excitable media models
will be made, to better understand the nature of the patterns appearing in
the simulations.
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3.1 Previous Model

The NF-kB activation process has been studied previously. A model was
proposed by [Yde et al. 2011b|, to describe potential cytokine waves in
mammalian tissue based on the NF-xB signaling pathways as well as the
bistable nature of the given biological system, to be able to describe the
occurence of chronic inflammatory tissue. The application of the model to
a chronic inflammatory system has been done previously by |[Holst-Hansen],
where it was applied to a group of a- and [-cells, called islets of Langerhans,
in a quite succesful attempt to model observed phenomenon in diabetes. In
the model, cytokine production through the upregulation of NF-xB was
modeled by a a set of partial differential equations, where, N, R, T' (T is
replaced with 7 in this study), were the amounts of NF-xB, inhibitor, and
TNF-a respectively:

ON

7 = krw - (D) (Niot = N) = ka - R (3.1)
OR R

oT T

where Ny, is the sum of passive and active NF-kB, and N is active NF-
kB. Ignoring the fact that extracellular cytokines bind to a receptor and
activate intracellular IKK, NF-xB is directly upregulated by the amount of
extracellular cytokines, modelled by the activation function fy(7), and is
proportional to the amounts of inactive NF-xB modelled by the (N — N).
The inhibition of NF-xB is an intracellular process, and all inhibition is
collected into the variable R as the amount of inhibitor and kry as the rate
constant of this inhibition. Since NF-xB transcribes its own inhibitors the
upregulation of NF-£B, also upregulates the production of inhibitors, here
modelled by the terms kygN. Intracellular degredation and/or dilution of
inhibitors is then the cause of downregulation of inhibitors, and is modelled
by the term R/7gr. The upregulation of NF-xB has the additional effect
of upregulating the transcription of its own activators, namely some pro-
inflammatory cytokines, like TNF-a and IL-15. The amount of cytokines
produced by the cell depends on the rate constant p as well as the activa-
tion function fr(N), which is a function of active NF-kB. The cytokines
produced have a known half-life, and the downregulation of cytokines is
here modelled by the degredation of them as T/7p. Lastly, an external
stimulus is induced in the upregulation of cytokines by a constant S. In
terms of autoimmune diseases, S can be interpreted as a defective cell or an
infection, i.e. a cell that because of a defect or infection, doesn’t recognise
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the antibodies presented by regular cells, and therefore gets stimulated by
normal healthy cells.

In [Yde et al.; 2011a] the activation function for N and T', was the Hill
function with a Hill coefficient of 3 for N and 2 for 7.

TS
T)= ———
In(T) T3 + K3,
N?
N)= ———
fr(N) N2+ K3

where K7, and K are thresholds for the activations of these to functions.
The Hill function and Hill coefficient for N were chosen to match experi-
mental observations [Yde et al., 2011a]. For T, the Hill function was chosen
because NF-xB was reported to form dimers, but the study by [Yde et al.|
2011a] also showed that replacing the Hill function with a linear activation
function gave similar results.

The degradation of T" and R, is proportional to the concentration of
T and R respectively, where the constant of proportionality is the half-life
1/7r for T and 1/7x for R. This was chosen because the degradation may be
carried out by dilution or proteasomes. As for the degradation of NF-xB and
the production of inhibitors, these terms were based on Michaelis-Menten
kinetics because of the relation to enzymatic bindings. A classical example
of Michaelis-Menten kinetics is an enzyme catalyzing a substrate to create
a product:

k
E+S<LpSkspyp
kr

where F is enzyme, S is substrate, and P is product. Now assuming
that the substrate S, is much larger than the Michaelis constant K MEL the
change in product over time becomes:

@ = kcat EtOt[S]

——— =~ kB 3.4
dt Ky + [S] ot (34)

These derivations and assumptions are why the production rate of R
and the inhibition rate of N are linear. A problem that does arise from

1The Michaelis constant is defined as:

kcat + kf
k.

Ky =

and can be derived from the steady-state to the time derivative of [ES].



18 3. MODELING MACROPHAGES

the linear terms is that the concentrations can become negative, which isn’t
the case for the nonlinear terms. Negative concentrations don’t make sense
physically and in the simulations they are set to zero. After all assumptions
and choices of activation functions, the final equations are:

ON T3

E == kTNm(Ntot - N) - kRN . R (35)
OR R

E_kNR-N—a (3.6)
or N2 T

or_ N T g 3.7
o PNEr KL (3.7)

By introducing parameter rescaling variables, we can reduce the number of
parameters in the model. The rescaled variables are:

~ N
N = 3.8
Ntot ( )
~ R
R = 3.9
Ntot ( )
~ T
T = 1
- (3.10)
Giving the final form of their model:
ON T3
OR R
— =knyg- N — — 3.12
(9t NR TR ( )
oT N? T
+.5 (3.13)

o TPNRS
The model for the production of cytokines through upregulation of NF-
kB ends up having 8 parameters, kry, krn, knr, TrR, P, Ky, 71, and S,

where all but p and S are fitted to experimental data.
Lastly, by adding a diffusion term to eqn. (3.13))

or N? T

— =p——n — — + S+ DV?*T 3.14

ot PNy RE 0T (3.14)
they couple neighboring cells, making the development of cytokine waves
possible.

3.1.1 Similarity to Macrophages

As was described in chapter 2] the inflammatory response in M1 macrophages
are also a product of the NF-xB network. From figure [2.3] we see a sim-
plified version of how recruitment of macrophages, and polarization of the
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M1 phenotype, through the Tj1 cells is done. This system of interactions
doesn’t incorporate the details of the NF-xB network, and as a whole has
to many interacting components to be feasible to model. Therefore, to be
able to model the inflammatory response of M1 macrophages, we need some
assumptions and simplifications.

First of all, as was stated in section [2.2.1] we are modeling recruitment and
cellular interactions (see figure . This means we disregard the de- and
remyelination phase of the inflammatory response. As for the recuitment of
macrophages though they, like neutrophils, activate their own inflammatory
response through TNF-«, their polarization into M1 macrophages, is done
by the Tp1 cells, through the I1-12 — IFN-y pathways |Janeway et al.
2001]. We are also assuming that M1 macrophages are readily available,
i.e. there is no need for a recruitment and polarization of MO macrophages
by Tp1 cells. This eliminates the need for Tj1 cells. It also means that
recruitment of M1 macrophages is done by the macrophages themselves,
through the cytokines I1L-12, IL-1/3, and TNF-a. An additional assumption
is that there are no M2 macrophages. This means that the only thing we
are left with is M1 macrophages, that are self-activating and self-recruiting.
From the full simplification scheme seen in figure [3.1], a set of components
similar to the system described in [Yde et al., 2011a] appear.

Given that the simplified system is very similar to the model by [Yde
et al., 2011aj, adapting it to a system of static macrophages therefore be-
comes a matter of mapping the mathematics of their model to the simplified
NF-xB network of the macrophages, and changing some of the free param-
eters to fit macrophages. What the model doesn’t take into account is
the chemotaxis of macrophages, which will be developed and described in
section B.1.3

3.1.2 Applying and Modifying the Model

Macrophages and neutrophils both have a role to play in the inflammatory
process, albeit different. Neutrophils are smaller, more numerous and have a
shorter lifespan than the macrophage [Summers et al., 2010]. However, the
chemokines and cytokines that activate chemotaxis and the inflammatory
response in macrophages, also activate these processes in neutrophils. The
longer lifespan of the macrophages make them ideal for inflammatory re-
sponse simulations, where the focus lies on how the macrophages aggregate
and what sort of patterns occur, since macrophage death can be disregarded,
making the system simpler.

Furthermore, the study by [Vicker et al. |1986] on neutrophil accumu-
lation showed that a constant spatial gradient of cytokines did not lead to
chemotactic cell movement. The only way to induce chemotactic movement
of neutrophils was through an impulse of chemoattractant, meaning that
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IL-12
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+
Cellular
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(A) :

Figure 3.1: The simplifications used in this study to create a model of the NF-xB
network of an M1 macrophage. (A) The recruitment and cellular interactions phase of
figure[2.3] We assume that there are no M2 macrophages, Tj,2 cells, and none of the cy-
tokines produced by these. Since this study sets out to model the chemotactic movement
of M1 macrophages, their inflammatory response, and their aggregation into plaques, at
a timescale of up to 60 hours, this assumption is necessary to simplify the components of
the system. (B) To simplify the system even further, we cut out the middle man, i.e. the
Tp1- and Tj17 cells, and make macrophages responsible for their own recruitment. (C)
A more detailed version of the inflammatory response of a macrophage, which illustrates
a simplified NF-xB network. As a result of the simplification in (B), this detailed ver-
sion shows, macrophages as self-regulatory, with regards to the inflammatory response.
(D) The final simplification of the system. This illustration shows how the extracellular
cytokines, and intracellular inhibitors upregulate and downregulate the amount of active
NF-xB in the cell respectively.
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there is need of a temporal component to the chemoattractant. This result
supports the use of the NF-xB model, as it gives rise to traveling cytokine
waves given the right set of parameters.

The similarities between neutrophils and macrophages means that the
equations developed for the NF-xB network of neutrophils can be directly
applied to the macrophages, giving us the initial equations:

ON

E :kIN'fN(I)<NtOt_N> —kRNR (315)
OR R

W:kNR.N_E (3.16)
ol 1

5 =p- f1(N) - T—I+S+DV21, (3.17)

where T" has been replaced I. The choice of activation functions for N was
the Hill function, with a Hill coefficient of three, for the same reason as
in section 3.1} For I, the activation function was chosen to be linear, as,
[Yde et al.; 2011a], had shown that a linear activation function qualitatively
would result in the same response, as can also be seen in figure (3.2

The equations can be simplified by redefining some variables, discretiz-
ing the spatial variables x and y, and non-dimensionalising the diffusion
constant:

~ N
N =" 3.18
Ntot ( )
- R
R=_" 3.19
Ntot ( )
F=— (3.20)
mp
Y
g = a (3.21)
~ D
~ 0? 0?
2 — _ _
Ve = ((%2 + ag2> (3.23)

where £ = § = 1 cell, is the unitless grid size, and d,,, is the diameter
of a macrophage. This leaves us with the final form of the PDE’s:
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ON I3 . .

OR - R

Eﬁ.::kNR.jv__;E (3.25)
oI N § .
5Z:pz\f—T—IJrSJrDvZI, (3.26)

To simplify the equations, the following redefinitions are used:

N=N (3.27)
R=R (3.28)
D=D (3.29)
V?=V? (3.30)

As for the values of the various rate constants, krn, krn, kng, and g
were fitted to match the initial peak of the NF-xB oscillations at around 30
minutes. The rate constants are k;ny = kry = kng = bh™!, and 75 = 2h.
The half-life of the cytokine, is harder to choose, since they vary a whole
lot depending on source and cytokine. For instance IFN-v has a reported
half-life of between 0.5 — 4.5 hours [Ando et al) 2014], TNF-«a a reported
half-life of between 3 — 25 minutes [Cheong et al., 2006, and for IL-13
the reported half-life is between 3 — 19 minutes [Kudo et al. [1990]. The
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Figure 3.2: Dynamics of equations (3.24)), (3.25), and (3.26|) without diffusion. Il-

lustrated here for NF-xB by running a simulation for 24 hours with a source term of
S =1.0h~! and p = 2h~! for the top row, p = 46h~! for the middle row, and p = 90h~!
for the bottom row. (LEFT) Oscillations in NF-xB with Hill function as an activation
function. (RIGHT) Oscillations in NF-xB with linear activation function.
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Figure 3.3: Dynamics of equations (3.24)), (3.25)), and (3.26) without diffusion. The

figure shows the temporal development of NF-xB, inhibitor, and IFN-~ for various values
of p. (LEFT) With p = 2h~! the system doesn’t excite and is quite fast to find a very
low steady state, with almost no production of cytokines. (CENTER) With p = 46h~!
the system goes through spikes in cytokine production followed by a refractory period,
where there is no production of cytokines because of the inhibitory effect on NF-xB is
too high. (RIGHT) With p = 90h~! the system quickly finds a steady state with very
high production of cytokines.

choice of cytokine half-life for this model was 7; = 25 min, which is at
the upper end of TNF-a and IL-15 and at the lower end of IFN-vy. The
study by [Yde et al) 2011a] also showed that a low 7; < 0.5 hours was
necessary for the system to exhibit the three types of behaviour shown
in figure [3.3, when changing the cytokine rate constant p. The study by
[Goodhill, |1997] showed that diffusion of molecules like i.e. 1L-13, was of the
order of 3-10~"em ™2 /s, with an effective diffusion constant of approximately
half. These results however, aren’t known exactly for the brain, and e.g.
the study by [Bendtsen et all |2014] showed that the effective diffusion of
the WRN protein was D.sr ~ D/100, which indicates that the effective
diffusion constant could be much lower than half.

Running simulations, these equations are sufficient for a single stationary
cell to exhibit behaviour ranging from no cytokine production to constant
cytokine production as seen in figure [3.3]

3.1.3 Motile Macrophages

A novelty of this study is the addition of cell motility. In previous studies,
people have looked at the spreading of cytokine waves and the bistable na-
ture of a system of stationary cells, and how the geometry of cells can have
a large effect on the spreading of cytokines and excitability of the system
[Holst-Hansen]. But to be able to understand the accumulation of cells,
and how cells are affected by a cytokine gradiant, one needs to take their
motility into account.

Adding motility to a system of macrophages, though not to complex,



M-CSF

Macrophage colony-
stimulating factor also
known as M-CSF or
CSF1, is a cytokine
involved in the prolif-
eration, differentiation,
and chemotactic mi-
gration of various cells,
macrophages being one

of them.

Receptor-Mediated
Endocytosis

Receptor-mediated en-
docytosis (RME), is
the process by which
a cell absorbs extra-
cellular molecules by
the invagination of the
membrane vesicles con-
taining proteins with
the receptor sites spe-
cific to the molecules

being absorbed.
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Figure 3.4: Figure inspired by figure 1.C in |Geiger et al) |2003|. It shows the one
dimensional case of the four phases of leukocyte migration, introduced in |Geiger et al.,
2003]. Take not that even though the direction on the figure is to the right, in a two
dimensional space, the leukocyte moves deterministically along the positive cytokine gra-
diantEL whilst moving like a random walker on the axis orthogonal to its movement. (A)
the leukocyte registers a cytokine gradiant in a specific direction, (B) it then proceeds to
rapidly move in the direction of the higher gradiant, (C), when reaching a location where
the cytokine gradiant stops increasing, the leukocyte stops moving, (D) the leukocyte
gets ready to register cytokine gradiants again and awaits the next cytokine wave.

introduces some uncertainties. The first issue is that movement speed of
macrophages in the brain isn’t known. In vitro experiments are of course
good approximations to the real cellular environment, but they also in-
troduce an uncertainty in the reported results. The second issue is that
the various studies report different results for the velocity of macrophages.
The study by [Vereyken et al., 2011] showed that the macrophage velocity
was 0.003um/s, when moving toward a chemotactic signal. The study by
[Grabher et al 2007] however, showed that macrophages, moved at about
lpm/min, when moving randomly, while responding quickly to wounding,
increasing their velocity to over 10um/min. This study also showed that
macrophages migrate like a random walker, with a favored direction gov-
erned by the cytokine gradient. This type of migration, called chemotaxis,
is also supported by the study on leukocytes by |[Geiger et al., 2003] which
shows that leukocytes move randomly when not affected by cytokines, but
when exposed to cytokines they have a four phase migration pattern as seen
in figure [3.4

In contrast to the study by [Geiger et al. 2003], the paper by |Jones|
2000] states that macrophages have a two phase movement, when influenced
by the chemotactic cytokine M-CSF. Their statement is based on results
from various papers [Boocock et al., [1989; |Li and Stanley|, 1991; Webb et al.,
1996] and in short, it says that macrophages can only register cytokines
once every 20 — 30 minutes and will continue to move in the direction of the
initially measured positive gradient, until it is able to register again. The
biological explanation for this is that through stimulation and endocytosis
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of all the M-CSF receptors, the macrophage is not able to sense any M-
CSF until the M-CSF receptors are recycled to the surface, which is what
[Boocock et al. |1989] show to be 20 — 30 minutes. So to sum up, there are
essentially two types of macrophage movement that have to be considered
for the model:

1. Directed migration, deterministically moving towards a positive cy-
tokine gradient, while moving like a random walker when not exposed
to cytokines.

2. Directed migration, moving towards a higher cytokine level, with re-
fractory sensing time, while moving like a random walker when not
exposed to cytokines.

Because of the novelty of motility in an excitable media, I will develop the
rules for both motility models. The first will be called Wave Model (WM),
and the second Receptor Model (RM). However, because of initial results
of the Wave model showed that it was inferior to the Receptor model, the
model will only be mentioned here.

WM Chemotaxis

Now that the methods for chemotaxis has been chosen, we can start the
formulation of a set of governing rules to be used for the Wavedependent
model.

Using the information from the cited studies, it is known that macrophages
move towards a positive cytokine gradient. This means that both the spa-
tial, and temporal gradient has to be positive. Using I,(z,y) as the value
of cytokines at time ¢ and position (z,y), the spatial cytokine gradient is
defined as:

0

J . .
VIL(z,y) = (%X + a—yy) L(z,y) (3.31)

The temporal gradient at a specific location (z,y) we can find by looking
at the difference between cytokine levels at two time steps:

Vl(z,y) =Li(x,y) — Li_i(z,y) (3.32)

From these two equations, we can set up some rules that govern the
chemotactic movement of macrophages:

[ The spatial gradient should be greater than zero:

VI,(z,y) > 0 (3.33)
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IT The temporal gradient at the current position (., y.) should be greater
than or equal to zero:

Vil(z.,y.) >0 (3.34)

IIT The temporal gradient at the new position (z,,y,) should be greater
than zero:

V(zn,yn) >0 (3.35)

The first rule ensures that a macrophage under influence of cytokines
always moves from a lower cytokine level to a higher cytokine level. But a
spatial gradient in itself, is not sufficient for a macrophages to determine if
the cytokines are moving towards it, or away from it as illustrated in figure
5.0

Wave direction
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Figure 3.5: Illustration of why a spatial gradient isn’t enough for macrophages to
distinguish between positive or negative cytokine gradients.

Therefore, the second and third rules are needed. It ensures that in-
creasing levels of cytokines are moving towards the macrophage and not
away from it. The reason that II is allowed to be equal to zero is that the
cytokine level at the position of the macrophage can be unchanged from
one time step to the next. The reason it must be non-negative is that
a temporal decreases in the local cytokine levels indicate a negative gradi-
ent, which means that the macrophages is on the back of the traveling wave.
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RM Chemotaxis

For the RM macrophages are said to have cytokine receptors. These recep-
tors get endocytosed when the macrophages measure a significant level of
cytokines at a neighboring location. This significant level of cytokines is
specified so that macrophages don’t move with a directed motion towards
every small increase in cytokine levels. Macrophages therefore only measure
neighboring cytokine levels when the receptors are available. Macrophages
still only move in a directed manner towards higher cytokine levels. This
means that macrophage movement depends on the spatial gradient from
equation . When a macrophage has measured a significant and higher
level of cytokines at a neighboring location, its receptors get endocytosed.
While they are being endocytosed, and before they are recycled to the cell
surface, the macrophages move in the direction of the measured cytokine
level. The time it takes macrophages to recycle the cytokine receptors is
called Treeyere and is a value that is added to each macrophage.

Now that we have established a set of rules and attributes by which
macrophages move chemotactically we finally have two finished models of
the system and their implementation will be explained in the following chap-
ter.

3.2 Macrophages as an Excitable Medium

The type of model we have introduced in this chapter, is called an Excitable
Media model. These types of models are nonequilibrium systems with uni-
form rest states that are linearly stable, but are susceptible to pertubations.
Excitable media are always in one of the following states: excitable, excited,
and refractory. A good example of an excitable medium is forests and for-
est fires. A forest is initially in an excitable state. Given a spark, a fire is
started and the trees that are on fire are said to be in the excited state.
When the trees have burnt down, they become insusceptible to forest fires
while they regrow. This period is called the refractory period. When the
trees regrow, they become more and more susceptible to forest fires and the
cycle can start again. Other examples of excitable media are the Belousov-
Zhabotinsky reaction, the FitzHugh-Nagumo model, and the inflammatory
response in neutrophils and [-cells. A necessety for an excitable medium
is a fast positive feedback loop, a diffusing propagator, and a slowly or
non-diffusing negative feedback loop. Using the forest fire example, the
fast positive feedback loop is the fact that a small amount of spark can
burst a tree into flame. The diffusing propagator is fire, and the slowly-
or non-diffusing negative feedback loop is the regrowth or growth of trees.
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Excitable media models with propagating waves can be described by using
only two equations:

O = f(u,v) + Vu (3.36)
0w = eg(u,v) + V>0, (3.37)

where € and 0 are the fractional timescale difference and the fractional
diffusion constant difference between u and v. The NF-xB model can be
reduced to two variables and an analysis of the of a static system using the
two variable NF-xB model has done by [Michelsen|, but will not be done in
this study.

From excitable media models, various wave patterns can appear, ranging
from circularly traveling waves, spiral waves, and stationary localized pulses.
In the following chapters we will see some of these types of patterns, as they
appear under various conditions of the dynamic NF-xB model.
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4

Computational Model

“Good news everyone!”
— Professor Farnsworth

Mathematical models and analytical solutions are not always enough to
solve equations, when the problems get too complex. Instead, such equa-
tions, or systems are solved using numerical simulations and agent based
modeling. In the previous chapter, a mathematical model for the produc-
tion of and migration towards cytokines was developed. For a system of
macrophages however, the complex interactions between diffusing cytokines,
moving macrophages and intracellular activation/transcription of NF-xB,
and production of inhibitor and cytokines, becomes too complex to find an
analytical solution. To be able to solve these equations we turn to com-
puter simulations and therefore need computational model, based on the
equations and rules developed in the previous chapter, which will be used
to generate simulation results in chapter [6

The chapter will start by introducing the simulation setup and meth-
ods. Numerical solution of equation (3.26)) will be shown, and lastly the
development of a numerical model governing macrophage chemotaxis and
random walk.

4.1 Simulation Setup and Methods

To solve the equations from the previous chapter, a program was written
in C++, based on object-oriented principles, which solves equations ,
, and , but without diffusion, for each macrophage in the sys-
tem using the 4’'th order Runga-Kutta method (RK4). The spatial part of
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equation (3.26)), i.e. the diffusion, is solved for every grid cell in the system
using the Euler method. Object-oriented programming was used to create
each macrophage as a self-consistent object, meaning that each macrophage
had a set of attributes, equations, and decision-making heuristics specific
to that macrophage. The simulations were performed on a two dimensional
quadratic grid of size N, = N, = 200, where each cell contained at most
one macrophage as well as the concentration of cytokines. The macrophages
were randomly distributed on the grid, and the amount of macrophages in
the grid is based on a wanted density. For most of the simulations and if not
specified, this value was chosen to be p = 0.15, meaning that 15% of the grid
was filled with macrophages. This value was based on the number of aver-
age macrophages m = 350 cells/mm? reported in [Nimmerjahn et al., [2005].
One macrophage had an additional production of cytokines, represented by
S in equation , and this macrophage was always placed in the center.
The simulations ran for a finite amount of time with a fixed timestep, and for
each timestep the equations of the model for each macrophage were solved
and each of the macrophages had to decide whether or not to move to one
of the adjacent cells based on its decision-making heuristics. Furthermore,
the data for each grid cell was written to files every tenth timestep. This
included macrophages locations in the grid cell and the number of cytokines
in that grid cell. The average NF-xB, inhibitor and cytokine data was also
written to files. Python along with the modules, numpy, matplotlib, and
seaborn are used to visualize the simulations, either in the form of movies
showing the movement of the macrophages and the diffusion of cytokines,
or in the form of plots showing the average levels of NF-£B, inhibitor, and
cytokines over time.

4.1.1 Numerical Model

As was stated above, to solve the model equations, we need to make use of
numerical integration methods. To solve the temporal part of the equations
we use RK4. Given an equation and an initial value:

%: (I,t):pN+S—T£] (4.1)
I(to) = I (4.2)

RK4 can mathematically formulated as:

Lnsr = In + 2L (ky + 2k + 2ks + ky) (4.3)
tyit = to + Al (4.4)
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with
k1 = f(I,t,) (4.5)
k2 = f(I, + §tki, t, + 3 (4.6)
k3 = f(I, + ko, t, + 3 (4.7)
k4 = f(I, + Atks, t, + At) (4.8)

In this model, none of the variables N, R, and I, are independent, therefore
to solve for one of them, we must solve for all of them. In terms of the RK4
method, this means that the computation of all &y for all the variables must
be computed before computing ks and so forth. This is a timeconsuming
process, but because of the smaller error of the RK4, it allows for much
greater timesteps than the Euler method as seen in figure .1}

RK4 Euler
dt=0.001h"! 107 4 dt=0001h"!
—— dt=0.01h"! | —— dt=001h"!
— dt=01h"!

— dt=0.1h"!

|Leqn—TrEa
3

| Legn =T puten
3

AE=
AE=
3

Time [h] Time [h]

Figure 4.1: Difference in numerical errors of the two methods, RK4 and Euler. The
equation solved was the temporal derivative of I, with an initial value of Iy = 20, no
source S = 0, and no diffusion D = 0. The exact solution to this equation is I(t) =

TIpexp(—t/7r).

To solve the diffusion and decay part of equation (3.26[), we use the Euler
method for the time integration. Solving the diffusion term is a matter of
Taylor expanding I around all the positions (x + Az, y), (z,y £ Ay), and
(x £ Ax,y + Ay). The Taylor expansion of these, and their recombinations
are called the Forward-, Backward- and Central Difference methods, where
the first two are first order accurate in space, while the last is second order
accurte in space. To ease the writing, I redefine x = i, y = j, and use
the nondimensionalized grid cell distances Ax = Ay = 1, and the diffusion
term D = D/d, . The resulting solution to the diffusion term for the Moore
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neighborhood is:

D

DV2I = AA_;EQ(]H_Lj + Ii—l,j + ]i,j—i—l + Ii,j—l — 4]i,j) (49)
B D

+ EE(QHJH + L1+ Lica iy + Licjo1 —4L,),  (4.10)

where we have used that Az = Ay = 1 and with the condition that A+ B =
1. The time derivative of I, in terms of the Euler method is written as:

oI - Lijeyne — 1 ju

— I~ 4.11
Ot lijt At ( )

can then be used to find the solution of % at time £ = t+ At, and is written
as:

DAt
Lijivar = Lije + W(Ii—i-l,j +Licvy+ Lijoa + L1 — 415) (4.12)
DAt
+ m([iﬂ,jﬂ + Liv1 g1+ Limagyn + Limrjor — 40 5),  (4.13)

where A = B = % and the numerical solution is first order accurate in time
and second order accurate in space. The validity of our numerical solution
depends on how well it corresponds to the exact solution in the limit of
At — 0 and (Az,Ay) — (0,0). If this is the case, we say that our nu-
merical approximation converges, and thus we can say that our simulations
approximate the exact solution. The Lax Equivalence Theorem states that
for a consistent finite difference method for well-posed linear initial value
problem, the method converges if and only if it is stable. The necessary
stability condition for this equation is:

2DAL + DAt < 1 (4.14)

1

At < o) (4.15)
This means that the choice of stepsize is upper bounded by the size of the
diffusion term. So far, these proofs and conditions make the choice of a
low stepsize preferable as it makes the solution more correct. But because
smaller At means that we need to do more computations to reach the end
of the simulation, the accumulation of small errors can become higher than
the larger errors of a higher At. This leads to a tradeoff between truncation
error, error by high At, and roundoff error, error by many computations.
In section the diffusion constant of the cytokine IL-15 is stated to be
D =3-10""cm/s. Non dimensionalizing this value and using it in equation
(4.15]), we get At <1/3D = 1/(3 %244.9)h = 0.001h.
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4.1.2 Computational Model

As was stated above, macrophages move like random walkers, when not af-
fected by any cytokines, but still use their filopodia to scan the environment.
The ability of macrophages to move, is programmed to be a function of the
macrophage class, and is called at every timestep. The new location that
the macrophage evaluates is chosen at random from one of eight possible
moves and how the location is evaluated will now be specified.

Random Walk

The Random Walk is specified in 1D as such: For each timestep At, the
particle at position x;, makes a move along the positive z-axis, with proba-
bility 1/2 and along the negative xz-axis with probability 1/2. This approach
however, must be modified for the model because the macrophages have a
velocity, i.e. an average distance traveled per hour. In section [3.1.3] we
specified some movement speeds in the units gm/h, but in the simulations,
the grid will be non-dimensionalized into unit spacing, and therefore the
velocity of the macrophages must be non-dimensionalized as well. Dividing
the reported velocities with the diameter of the macrophage, we get the
macrophage random walk velocity and chemotaxis velocity:

vper it = 0.51 cells/h (4.16)
vfggl}g‘f& = 2.9 cells/h (4.17)
vf,f;bg;r = 28.6 cells/h (4.18)

where the values of v,,, g and vy, cr, are the velocity of macrophages
when they are- and aren’t affected by cytokines respectively. Because only
the study by [Grabher et al.;|2007], reported velocities for both random walk
and chemotaxis, these values will be used in the upcoming simulations. To
enforce this in a random walk scenario, we can implement a movement prob-
ability. This means that the macrophage won’t move at every timestep, but
that its mean number of moves per hour will still be close to the veloc-
ity. An easy way of implementing a movement probability is to say that
the macrophage moves if some random variable p € [0,1] is smaller than
UmpAt/d, where d, is the distance from (x.,y.) to (z,,y,). Because of unit
spacing, in the grid the distance from a cell to its von Neumann neighbor-
hood is d = 1, while the distance to the four cells at x;41 11 is d = V2.
Using this information, we can write up a probability of movement for when
macrophages aren’t affected by cytokines:

g AL
Prw = ”1’% (4.19)
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Then for each timestep, if the macrophage isn’t affected by cytokines, it
will move with probability Pgry,, in one of the eight possible directions.
Adding velocity to the system, and using a probabilistic movement, we
need to make sure that the probability of movement isn’t greater than 1.
In addition to satisfying equation , At now also has to satisfy the
following inequality:

| > vAt (4.20)

d
(4.21)

This condition has to hold for all d. Setting d to its lowest value d = 1
gives:

1> vAt (4.22)
At < ! (4.23)
v

Using the highest reported velocity in this equation we get At < Klﬁh =
0.035h. This upper bound on At is higher then the one obtained from
equation , but as was stated in section , the effective diffusion
constant could be up to 100 times lower than the diffusion constant. This
affects the upper bound on At found from equation making it as high
as At < 0.136h. So to clarify, the timestep At is upper bounded by the

lower value found from the two equations (4.15]) and (4.23)).

Receptor Model

For the RM we add a receptor recycling time for each macrophage. We
will call this variable Tgecyce and the recycling time is chosen to be in the
20 — 30 minute interval specified in the paper by [Jones, 2000]. To make
all the macrophages receptor recycling time be in this interval, the variable
TReeyele 15 defined as:

TRecycle = (20 + dU)/GO hil (424)

where dU is a random number drawn from the uniform distribution U (A, B)
where A and B are the upper and lower bounds of the distribution. To
ensure that each macrophages’ receptor recycling time is between 20 min-
utes and 30 minutes the lower and upper bound are chosen to be A = 0
minutes and B = 10 minutes, giving an ensemble mean recycling time of
(TReeyele) = 25/60 h™1. For each timestep macrophages evaluate one of eight
possible directions. If the evaluated locations’ cytokine levels are significant
(I > 0.05) and greater than the current locations cytokine levels, a timer,
TRecycle 18 set to the value of that specific macrophages’ Trecyee. While this
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counter is greater than zero, the macrophage will not evaluate its neighbor-
ing cells’ cytokine levels but will move in the same direction as previously
with probability P = v’”p’TCTAt. The movement probability is again added to
ensure that the mean moves per hour is v,,, cr. The computational steps
for this model should be understood as follows:

e Evaluate the randomly chosen new locations current cytokine levels
o If the receptors are available, i.e. Tgecyre < 0, then

— If the new locations cytokine levels are significant and higher,
move with a probability of P = U"‘“TCTN to the new location, set
a receptor recycling timer to be equal to Trecycie = TReeyele, and
save the direction of the move.

— Else move with probability Pry to the new location.

e Else with probability P = %“TCTM move in the direction of the previ-
ous move, and decrease the receptor recycling timer by the size of the
timeStep TRecycle = TRecycle — At

This model allows the macrophages to move like random walkers when not
affected by cytokines, and to move in a specific direction when there is a
cytokine pulse/wave and when the cytokine receptors are available.

We now have all that we need to run simulations for motile excitable
media, but first we will do a short analytical analysis of the stationary
model, to illustrate the bistability of the system.
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Model Analysis

)

“Chaos was the law of nature; Order was the dream of man.’
— Henry Adams

So far the focus of this study has been understanding the biological and
physiological system, and developing a mathematical- and computational
model for the production of and migration towards cytokines in a popula-
tion of macrophages. In chapter |3| a model for the production of cytokines
was developed, and we can now with simulations show how such a system
behaves under various conditions. But first, we will take an analytical ap-
proach, to see what can be derived from the model.

This will be a short chapter with an analytical analysis of equations

(3.24), , and ([3.26)), for a stationary macrophage showing the bista-

bility of the system and the evolution of the variables in phase space E]

5.1 Stationary Macrophage

For the analytical approach, we will assume that we have a single immovable
macrophage, and that cytokines do not diffuse. We will look at the solutions
to the steady-states of the model equations, and from this see the bistable
nature of the model. The effect of our free parameter p, will be analysed,
and bifurcation of the steady-state solutions as a function of p will be shown.
Furthermore we will look at the effect of S on the system, and show how it
can be used to lower the critical p needed for excitability.

!This has been done very thouroughly in [Holst-Hansen, Chapter 4. Model Analysis]
and thus I highly recommend interested readers to read it.
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5.1.1 Steady State

To show the bistability of the model, we can look at the solution to equations

(13-24), (3.25)), and (3.26) in steady state.

]3
0=k (1 — Ng) — kpnRss 5.1
Ny 1( ) — kry (5.1)
RSS
0= kngpNgs — (5.2)
TR
[SS
0 =pNg — =+ 5+ V2, (5.3)
Tr

Equations (5.1)) and (5.2) can be combined to get the steady state for N:
Rss = kNRTRNss (54)
]3
Nss = =2
Ta+D+a

(5.5)

with o = W%m As for the steady state of equation ([5.3)) we neglect the
source and the diffusion term, and hence get the steady state solution

Iss = pTrNgs (5.6)

which after inserting the steady-state solution for N, becomes:
3

Bla+D+a

I, = py (5.7)

which has the trivial solution I, = 0. Rewriting it, we get the third order
polynomial:

(1+ oz)]fs — pTIISQS +a=0 (5.8)

Solving this equation directly is hard, but by making some assumptions,
and using a few tricks, we can easily find approximate solutions to this
equation. First, we rewrite the equation:

prr— (1+a)lg = OJS_S2 (5.9)
a —2 pTI

_ _IL 5.10

a+1° a+1 ( )

(5.11)

Assuming that I, is very high, the left side of equation (5.10)) is approxi-

mately zero, and thus, we have a steady-state when I, = 25, Rewriting
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the equation, we can find the last solutions:

[&SZZQ—i—l(pT[ _[Ss>
«Q a+1
—1
1325: - o — Ios
a+1\a+1

1 —1
2= (1 _ar Iss> (5.12)
pTI pTI

Taylor expanding the term around z = 0 in the parenthesis to first order
gives (1 —x)7! ~ 1+, where z = 2L from which we get the second order

prr’
polynomial: '
1
2~ <1+ ot [ss>

P P
0=1I - —a(a;;l)fss -2 (5.13)
P pTI

This gives the solutions:

2

[ss =
2
2 3.3
ala+1)+ \/(a(a+1)) + dap3T} -
N 2p27? (5.14)
Giving us the steady-state solutions, also called fixed-points:
Is1 =0 (5.15)
ala+1) £ \/(a(a +1))° + dapr3
Lo = - ! (5.16)
’ 20277
j (5.17)

a+1

To find out which of these solutions are stable, we compute the Jacobian.
We can then compare the determinant and the trace of the Jacobian evalu-
ated at the biologically valid steady-states, i.e. non-negative solutions since
concentrations have to be positive |Strogatz, 2014]. The Jacobian of our
system is defined as such:

ON 9N 9N

ON OR aI

_ | 86R 8R B8R
IT=15v 5 ar (5.18)
o ol oI
ON OR oI



40 5. MODEL ANALYSIS

Which after some derivations becomes:

—knIP /(P + 1) —krn  kin(1— N)3I2/(IP +1)2
J = kNR —1/TR 0 (519)
P 0 —1/7’1

To find the stability of a fixed point, we can check the sign of the real part of
the eigenvalues. If they are all less than zero, the fixed point is stable and if
one or more of them are positive, the solution is unstable. The eigenvalues
of the Jacobian are found from the equation:

det |J — AT = 0, (5.20)

where I is the identity matrix. Plugging in the steady-state solutions from

equations (5.15)), (5.28)), and (5.17)), and using the values k;ny = kgy =
kxngp =5 h™l 7 = 120/60 h™', p = 140 h™!, and 77 = 25/60 h™! for the

model parameters, we get the following eigenvalues:

L1 = M =—24 Ao=—14+499% Ng=—-1-49%
]ss,2 = AL = —19.03 Ay = 16.11 /\3 =-0.35

From these eigenvalues, we can deduce that I, and I3 are stable nodes,
and I;s2 is a saddle point. This is exactly what we wanted the model
to exhibit, because it means that the stable steady-states, are when the
concentration of I is either high, or low, while it has an unstable fixed
point in between. The steady-states can be seen as filled (stable) or empty
(unstable) rings in figure where the arrows represent the direction field,
which are calculated from the instantaneous value of %—]tv, and %, at various
values of N and I.
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Figure 5.1: [ — N phase space illustration of the bistability of the model for p = 140
h~!, at the steady-state level of R. Filled rings are the stable steady-state solutions to
equation (5.8), while the open ring is an unstable solution. The arrows represent the
direction field, and serve to illustrate the point that the low and high concentrations of
1, are stable nodes, while the intermediate fixed point is a saddle point.

The bistability of this model is highly dependent on the value of p, where
a too low value of p will result in the only stable solution being the zero
point.

5.1.2 Critical p

To illustrate the point made in the last section, that the bistability of the
model is highly dependent on the value of p, we will take the analytical
approach to show the bifurcation point as a function of p. To do this, we
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can use equation ([5.7)), and write up p as a function of I:

p(l) = o+l +a (5.21)

T ][ 2
The critical p value is found as the minimum I,,,;, # 0, that is a solution

to % =0, i.e. we want to find a local extrema of p as a function of I (see

figure . Differentiating p(I) with respect to I, we get:
dp _Pla+1)—2a _ 0
dI 113
The only non-zero solution to this equation is found by looking at the nu-
merator:

(5.22)

Pla+1) =2« (5.23)

20 1/3
I= (a+1) (5.24)

Inserting this into equation (5.21)), and using the specified variable values,
we find that the critical p is:
Bla+1)+a
l)=-"“———
p(Le) -
pe=p(l.) =483 h" (5.26)

The bifurcation point, and some resulting I — N phase-plane steady-states
can be seen in figure [5.2

(5.25)

100 120 140

Figure 5.2: [ — p phase plane analysis, showing the steady-state solutions to equation
(5.8), along with three I — N phase-plane plots for various values of p.
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The meaning of this bifurcation point, is that below p., there is only
one fixed point, and the macrophage can’t get excited. Above p,., the
macrophage can, if I gets large enough, stabilize in an excited level. This ex-
cited stable state is what we will call the chronic inflammatory state (CIS).
Using this result as inspiration, we can hypothesis about how, a CIS can be
alleviated. From figures and we can see that, to go from the CIS
to the healthy state (HS), we can do one of three things:

1. Lower [/
2. Lower p
3. Lower N

4. Increase R

Since [ is extracellular, lowering it could be done by lowering the lifetime
of cytokines 7;. Biologically, this would mean either increasing the uptake
of cytokines by other cells, or breaking down the cytokines using enzymes.
Lowering of I, could indirectly also be done by lowering p. Because p, is
of loose biological meaning, it is hard to say, what the biological equiva-
lence is of lowering it. However, it is still an interesting thought, because
computationally, this is a very simple thing to do, which makes analysing it
easy. The last thing one could do, is lowering N. Since N is intracellular,
lowering N, would mean either increasing the effect of inhibitors on N, ei-
ther by increasing the effect of R on N, or N on R, or lowering the effects
of cytokines. Lowering the effects of cytokines on the NF-xB production is
the most appealing method, as a study by [Starossom et al. 2012] showed
that downregulation of M1 macrophages through p38-, and NF-xB signal-
ing pathways, could result in resolving plaques. In the model, a lowering
of the positive feedback parameter kjy is rather straight forward, but the
biological meaning of this could be interpreted in different ways. One way
to interpret it, is that an inhibitor is introduced to the system, that blocks
some of the cytokine receptors on the macrophages. This would lead to
a lower uptake of I, and result in a lower N. Another way to interpret
it is inspired by the study by [Starossom et al., |2012]. In the study the
introduction of GAL1 significantly decreased the phosphorylation of p38,
and [kB-a. Because kry in the model, effectively is the phosphorylation of
[kB-a, this result is very interesting, and will be analysed in the following
chapter.

5.1.3 Defective Macrophage

As was explained in section a defective macrophage gets an additional
term S. The purpose of this term, is to instigate the cytokine production,

GAL1

Encoded by the
LGALS1 gene, Galectin-
1 is a protein impli-
cated in the regulation
of innate and adaptive
immunity. It is part of
the family of endoge-
nous lectins, who func-
tion in the extracellular
environment by interact-
ing with many glycosy-
lated receptors. Recent
evidence, suggests that
they also play a role

in modulating the in-
tracellular signaling
pathways|Starossom

et al., [2012].
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thereby starting the inflammatory process. But what effect does this term
have on the critical p, and on the steady-state solutions of 7 First of all,
because we no longer are disregarding S, the steady-state equation for [
becomes:

3

1
Is = = S 5.27
Mt ra 20

Rewriting this equation, we get the fourth order polynomial:

I'(a+1)+aly, —prl?, — ST (a+ 1)+ Sta =0 (5.28)
(A)
4
—_— p=30 h-!
34 — p=50h~*

(B) g (C)

=5 1
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Figure 5.3: Effects of stimuli on steady-state solutions. (A) shows the solutions to
equation ([5.28)), for three values of p and 0 h™* < § <2 h~!. (B) and (C) are found
by rewriting equation , to have S, and p on the LHS respectively and plotting the
solution along the z-axis, and the variable along the y-axis. (B) and (C) show that
when p < pe, if S is as low as S = 0.25 h~! we still have a bifurcation point, meaning
that S actually lowers the critical p.
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Figure 5.4: Model oscillations, and stabilization as a function of various values of S at
three values for p. The top row is for S = 0.25 h™!, the second row is for S = 0.5 h™!,
the third is for S = 1.0 h™!, and the last row is for S = 2.0 h~!. The source is turned of
after ¢ = 18 hours, and we see how only a simulations with p much greater than p. is able
to sustain the CIS, while simulations with p =~ p. can sustain the CIS while the stimuli
is on, given that it is high enough, but fails to stay in the inflammatory state when the
source term is set to zero. For p < p. we see how not even S = 2.0 h™! is enough for
exciting the system into the high steady-state. The reason for this is of course, as is seen
in figure (B), that the only solution to equation is the zero point when p is this

low.

The general solution to this quartic equation is quite lengthy, but we can
plot the LHS as a function I with various values of p and S. In figure[5.3|(A)
three values of p are plotted with S = 1 h™!, shown as the solid lines, while
the the semi-transparent areas are the plots of p in the range 0 h=! < § < 2
h~!. What we see for p = 30 h™! (the red line and area) is that when S = 0
h~!, there is no solution except the zero point, which is of course what we
expect for p < p.. However, by increasing S, we suddenly find that the
steady-state of I increases to a non-zero value. A little more interesting is
the case of p = 50 h™! (the green line and area), where with S =0 h™! the
steady-state has three solutions. By increasing S gradually S =1 h™! (the
solid green line), we increase the distance between the high concentration
stable fixed point and the unstable fixed point, and decrease the distance
between the low concentration fixed point and the unstable fixed point.
Then as S reaches a certain value, the zero point and the unstable fixed
point merge into one, and increasing S above this value, makes the only
solution the high concentration fixed point. This can also be seen in figure
(B). Figure (C) is again a p — I phase-plane plot made to illustrate
the effects of S on the bifurcation of I as a function of p. It shows how
a small S = 0.25 h™! has moved the stable- and unstable fixed node very
close, and that an S as low as S =1 h™! entirely removes the bifurcation
point and makes the only solution the high concentration steady state. To
see the effects of the stimulus we can have a look at figure [5.4] which shows
the dynamics of the model for various values of S at three values of p, where
one is lower than p., one is almost equal to p., and the last is greater.
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We have now looked at the most important parts of the stationary model,
that is still applicable to a motile model. Of course, when taking the dif-
fusion term into consideration as well, there are other factors that play a
role, like influx of cytokines from neighboring cells, and loss of cytokines
through diffusion. We will not go into this, but interested readers can read
[Holst-Hansen, Chp.4 Model Analysis, Appendix A, and Appendix B] for a
very nice derivation of an approximate solution to the steady-state of equa-
tion for an islet of cells. What is worth noting, is that for a group
of macrophages in equilibrium, the diffusion term and source term are ap-
proximately equivalent. This occurs, because in a group of macrophages,
the total irretrievable loss from diffusion becomes lower as the number of
macrophages grow. This essentially means that the derivations done in this
chapter could effectively be applied to a system of macrophages in equilib-
rium. In the following chapter, we will take a look at the simulations, and
what can be derived from these simulations.
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6

Simulation Results and Discussions

“If you’re going through hell, keep going”
— Winston Churchill

Throughout the thesis we have developed a sound understanding of how
small changes to particular parameters can have an immense effect on the
dynamics of a single macrophage. Though these analytical results are in-
teresting, they were developed under various assumptions and conditions
that aren’t valid when looking at a system of macrophages. Some of these
include, the assumption of no diffusion used to find the steady-state solu-
tions to the cytokine partial differential equation and the no source term.
These analytical solutions therefore only serve the purpose of illustrating
the various states of the macrophage, and how small changes in the system
can lead to very different results.

Simulations however, allow us to numerically show how such a system
of macrophages behaves under various conditions. Through simulations we
can investigate spatial and temporal profiles of a system of macrophages,
and seek answers to questions such as, how does macrophage self-regulation
occur, how is the average plaque size related to the positive feedback pa-
rameter p and the density of the macrophages, and how is a low diffusion
constant system different from a high diffusion constant system? These are
some of the questions that will be examined in this chapter.

The chapter will start by describing how plaques are defined, and how
their size will be measured, as well as some general data analysis used for
the results. This will be followed by looking at the effects of low and high
cytokine diffusion constants and on average plaque size. Using fixed values
of D and S, we will proceed to find answers to questions such as how and
when does self-limitation, i.e. localized non-spreading chronic inflammation
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occur? And what can be done to resolve plaques? Each simulation setup
will be described and the results discussed.

6.1 Plaque Definition and Data Analysis

Before we go into the simulations, how they are done and their results,
we will need to define some types of measures, e.g. how can we from a
simulation evaluate the average plaque size, and how is average plaque size
defined?

Each simulation saves the location of every macrophage, the cytokine
levels of the entire grid and the ensemble average of each macrophages NF-
xB, inhibitor and cytokine levels. Some of the simulations will save this data
for every n’th hour where n is mostly chosen to be n = 0.1. Simulations
where we are only interested in the configurations at the end, will only save
the last data configuration. To extract meaning from the data, I will in
many cases look at averages of various values. In the case of plaque size,
a single plaque is found through a breadth-first search (BFS) of the data.
Defining the location of each macrophage as:

x = [(z1,11), (T2,92), -+, (TNpps YNy

and the cytokine levels of the entire grid as:

C11  Ci12 CIN

C21  C22 CoN
C= ]

CN1 CN2 ... CNN

we can define an array consisting of all the macrophage locations where the
cytokine levels are significant:

xe = {(x,y)|(z,y) € x : Cpy > 0.05h71}

The choice of 0.05 h™! as the significant level of cytokines was done empiri-
cally, based on simulations. The reason it was chosen based on simulations,
was that the maximum cytokine levels of the grid depends very highly on
the parameter p, the number of macrophages in the grid, and the diffu-
sion constant D). This meant that calculating a maximum cytokine level,
would be very problematic, and therefore the choice of a significant cytokine
level also became very problematic. Choosing a significant level of 0.05 h™?
was therefore done to eliminate macrophages from moving towards very
small cytokine gradients, while still allowing them to see small, but not
insignificant levels of cytokines, in their environment, giving rise to some
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randomness. To find the plaques from this array we can pick a random
(xg,yr), and do a BFS. If the randomly chosen location is part of the only
plaque in the system, then the BFS will return the entire array x.. If how-
ever there are multiple plaques, a BFS on x. will return all the locations
that can be reached from (zg,yr). To find the rest of the plaques one can
remove the locations that were reachable from (zg,yg) from x. and do an-
other BFS. This continuous until x, is empty. Now the length of the BFS
on x. will be the number of macrophages in that plaque. It should be noted
that if the BFS returns only less than three macrophages this result will be
overlooked. The reason these results are overlooked is that cytokine waves
can lead to macrophage locations having a high cytokine levels without the
macrophage actually producing cytokines or being part of a plaque. Now
because Az = Ay = 1 the number of macrophages in a plaque is actually
equal to its size Apjaque = Nmp. The average plaque size of a simulation is
found by averaging the plaque sizes:

1 n
Ha = E E Aplaque,i
i=1

and the standard deviation is:

1 n
04 = - Z(Aplaqu@i - H’A)Q

n <
=0

When we are doing more than a single simulation on a specific parameter
set, we will want to find the mean over the simulations. Since we are
assuming that we are essentially simulating a real world phenomenon, we
expect the results to be consistent, given the same initial conditions. But
we also know that, because of randomness, introduced by movement of the
macrophages, or by the manner of which cells diffuse cytokines, there will be
some variations to the simulations. Since the simulations are independent,
and because of our assumptions, we can make use of the Central Limit
Theorem, which states that taking the sum of K independent variables
drawn from a distribution with a mean p and variance o2, the expected
value of the sum is equal to the sum of the means|Barlow, 1989]. W.r.t. our
simulation it means that the mean of n4 is a better estimate for the true
mean and is given as:

1 K
<Aplaqu6> =p= K Z; i

where K is the number of simulations, and has the variance:

02 = lia?
K3
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Now that we have a definition of the plaque size and how they are calculated,
we can start analysing simulation results.

6.2 Parameter Evaluations

As was stated earlier in the study, cytokine diffusion, D, cytokine stimuli S,
and positive feedback on cytokine production p are variables that we either
don’t have a well defined value for or a free parameter. To alleviate the
problem of doing all the simulations for all possible values of D, S, and p,
this section will show how these parameters affect the average plaque size.
The ultimate goal of these simulations, is to show that a rescaling of the
diffusion is equivalent to resizing the grid, meaning we can choose a fixed
diffusion constant for the rest of the simulations and focus on the qualitative
results, as the quantitative results can be rescaled.

From simulations we wish to find the minumum p for a system of motile
macrophages to exhibit sustained inflammation. Furthermore we want to
find out if there is a relationship between the average plaque size and the dif-
fusion constant, and the average plaque size and the amount of macrophages
in the system.

6.2.1 Minimum p for Sustained Inflammation in a Mot-
ile System

To find out how the minimum p is affected by the diffusion constant, a
simulation was set up to run for ¢ = 60 hours, where the source S was on
for the first ¢ = 24 hours, with a fixed p and D. This was done to see if
any self-sustaining plaques had developed. If the system dropped to the
healthy state, i.e. no inflammation, no such plaque had developed and the
simulation was stopped and p was increased. The simulations were done for
S € [22,222] h™! and D € [2,202] cells?/h and each simulation was done
four times. However, the simulations were only done for S + 20 = D, since
a diffusion constant much higher than the source term would result in the
defective macrophage not getting excited. Furthermore, since we are more
interested in the state of the system when S is turned off, an S higher than
D increases the probability of exciting the system into the inflammatory
state. The results are plotted in figure [6.1] Figures [6.1(A) and [6.1(B)
show how the minimum p needed for sustained inflammation at a given
D increases as well as how the increasing diffusion constant affects the
average plaque size. From figure [6.1(B) we also see that the average plaque
size of a motile excitable medium around the minimum p = p* depends
linearly on the diffusion constant. What we don’t see in figure [6.1(B), are
the large errorbars for D = 2 cells?/h, which stretch from (Apjague) = 2
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Figure 6.1: These figures show (A) how the minimum p is affected by the increasing
diffusion constant, and (B) how an increasing diffusion constant leads to larger plaques.
Because of very small varioations in the results of (B), the errorbars aren’t visible.
(B) very interestingly shows that there is a linear dependence of the plaque size on the
diffusion constant.

macrophages to (Apqque) = 35 macrophages. This uncertainty is also seen
in figure [6.1(A), for D = 2 cells?/h, where we see how there is a large
uncertainty in the minimum p needed for sustained inflammation. It should
be noted, and is visible in figure[6.2] that these simulations led to the system
always being locally inflamed, i.e. only a central chronically inflamed plaque
around the defect macrophage, except for D = 2 cells?/h. This result
actually simplifies the choice of S for the rest of the simulations, since it
means that a higher diffusion constant doesn’t change the qualitative results,
but merely scales them. One reason that there’s a larger uncertainty when
D is small is that the low diffusion constant means a slow spread of the
inflammation resulting in the system not reaching, or very slowly reaching
a stable-state. The issue w.r.t. this simulation is that the state of the
system at D = 2 cells?/h at ¢ = 60 h, is not a stable inflammatory state,
but an oscillatory state. Because most MS symptoms develop abruptly
within hours or days [Rolak, |2003], a too low diffusion constant, that after
t = 60 h hasn’t reached any form of chronically inflammatory state, can’t
be used. The choice of diffusion coefficient in the following simulations will
therefore be D = 162 cells?/h. This choice lies in the range of possible
diffusions values presented in section and has the lowest standard
deviation in minimum p presented in this section. The chosen diffusion
constant is also lower than the diffusion constant for IL-13 of D = 3- 1077
cm? /s = 244 cells? /h, but slightly higher than the effective diffusion constant
of Doy = 122 cells?/h. We can therefore still argue that this is an effective
diffusion constant of the cytokines, and most importantly our choice of
diffusion constant gives rise to less uncertainty in p*.
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6.2.2 Average Plaque Size

To see how the p parameter affects the plaque size a simulation was set
up which uses the previously chosen value of D = 162 cells?/h and runs
from p = 118 h™! to p = 718 h™!, with a macrophage grid density of p =
0.10 to p = 0.30. Again S was on for the first ¢ = 24 hours, and the
simulation ran for ¢ = 60 hours. The figure [6.3[(A) and (B) show the
results of these simulations. Figure [6.3[(A) shows how increasing p, for
a fixed N,,, in almost all cases actually lowered the average plaque size.
The interesting part of this result, is that it shows that when p is close to
the minimal p needed to excite the system most of the macrophages will
accumulate into one large plaque. If however p is higher, less macrophages
are needed to sustain and excite the plaques and the macrophages will
instead form into many smaller plaques. in figure [6.3|(B) it is a bit easier
to see how increasing p and N,,, affects the average plaque size. On this
figure we see that increasing the number of macrophages, does not introduce
any qualitative changes in the results. In fact, increasing the number of
macrophages just scales the plaque size linearly, at least for high p. Close
to the critical value there is high variation.

Since there are no qualitative changes in the results found by increasing
the number of macrophages there is no reason to run the simulations for
other than one value of N,,,. However, this will be done for one of the
following simulations in which we want to see if plaques can grow infinitely
given enough macrophages.
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Figure 6.2: Formation of the central plaque for S € [22,222] h™! and D €
[2,202] cells?/h. Five of the six simulations, show the same qualitative results, except
for D = 2 cells®/h and S = 2h ™"
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To sum up this section, we found that the qualitative results were the
same, when increasing diffusion constant and number of macrophages. We
could therefore choose a fixed D, and N,,, for the rest of the simulations.
The choice of D = 162 cells?/h fell on a value slightly higher than the
effective diffusion constant reported in |Goodhill, |1997], while the num-
ber of macrophages N,,, = 0.15 - NN, cells, was chosen from the average
macrophage density reported in [Nimmerjahn et al., 2005]. The choice of
S =182 h™! was not specified based on any experimental results, but was
chosen based on the results of section and because a S slightly higher
than D would ensure a net production of cytokines, making the transition
to the inflammatory state more probable.

6.3 Self-Regulation

In the previous section, we saw that when S = D and p ~ 118h~! the forma-
tion of a central plaque, with no other plaques happend for all D = § # 2.
We therefore know that self-regulation is a normal occurence in the model
and not a numerical artifact or something that is very unlikely to happen.
One of the most important questions this thesis sets out to answer, is under
which circumstances macrophages accumulate in self-sustained groups. In
other word how does self-regulation of chronic inflammatory states occur,
and what are the criteria for such to happen?
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Figure 6.3: Figures showing how the average plaque size is affected by p and N.
(A) shows change in plaque size as p increases for various values of N,,, as well as the
standard deviation. (B) shows the average plaque size surface, and how both a change
in p and Np,, affects the average plaque size.
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6.3.1 Plaque Development

In most forms of MS, and other demyelinating diseases, plaques are localized
states, meaning they don’t spread indefinitely. But, given that cytokine
waves can be spread over a very large area, given enough proponents, what
limits plaques from growing indefinitely, is a question that is worth trying
to answer. In the most common form of MS, called RRMS, plaques are
randomly distributed and have an average plaque size of 72421 mm? using
T2W imaging, and 91 +35 mm?, using FA-maps [Agamanolis; Brownell and
Hughes, [1962; Kealey et al. 2005]. What limits their growth is of course a
very complex question and whose answer at the current date is incomplete,
but as the simulation results will show, given the right range of parameters,
it can be explained by the simple fact of a macrophage depleted zone. This
process is what in the study is called self-regulation, and it is the process by
which, the defective macrophage, only attracts the very nearest neighboring
macrophages, creating a central plaque. This attraction of only the nearest
macrophages means that a zone free from macrophages will emerge creating
a buffer zone between the chronically inflamed central plaque and the rest
of the macrophages. If however more macrophages were introduced to the
depleted zone, the plaque would increase in size only limited by the size of
the grid and the number of macrophages.

To answer these questions, two simulations were set up. The first one
to show the accumulation of macrophages in a central plaque which was
separated from the rest of the macrophages by a delimited zone. The second
one to show that the size limit of the plaque only depends on the amount
of available macrophages.

6.3.2 Localized Chronic Inflammation

From sections [6.2.1] and [6.2.2] we saw that a central plaque formed when p
was close to p* ~ 118 h™!. To see how such a plaque formed, a simulation
was set up to see the temporal evolution of the system. To see the qualitative
difference between the formation of one large plaque and many smaller
plaques, this simulation was done for various p. The source term was set to
S =182 h~!, diffusion constant to D = 162 cells?/h, and positve feedback
of cytokines p was p =118 h™!, p =168 h™!, p =218 h™!, and 268 h™! for
the four simulations.

The results of the simulations show that the emergence of a central
chronically inflamed plaque, is highly dependent on the value of p. For
the simulations with p > p* the inflammation wasn’t contained in a cen-
tral plaque, but spread to the entire system creating many small plaques.
More importantly it proves the existence of the localized chronically in-
flamed plaque, which occurres because of the depleted zone. The temporal
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Figure 6.4: Simulations of temporal development of a central plaque, with p = 118 h™1.
A defective macrophage introduces a production of cytokines into the tissue resulting in
a central plaque isolated from the rest of the macrophages by a depleted zone. In the
center we see the temporal development of the radial density, and around this we see
images of the macrophage movement and cytokine diffusion at various frames.

development seen in the surface plot of figure is produced by looking
at the radial density. This radial density data is found by taking the sum
of all macrophages in the area A,qgiq = mR2,., — mR2, ... For this plot
the grid was split up into forty radii’s. The rest of the simulation results,
ie. p=168 h™! p=218 h™', and p =268 h™', are plotted in figure [6.5]
where the temporal development is plotted in the central column, the initial
burst of cytokines in the left column, and the chronic inflammatory state
in the right column. As for p = 118 h™!, all of these simulations start with
the formation of a single plaque in the center, but because of the higher
p, inflammation is spread to the entire grid. The results from this section
showed that the model gives rise to two types of plaque formation. One be-
ing the formation of a central chronically inflamed plaque isolated from the
rest of the system. The other was the formation of multiple plaques, where
most if not all of the macrophages of the system were included. In the most
common types of MS, a plaque usually consists of one large scarred area,
consistent with a central chronically inflamed plaque, and not a collection
of scarred areas. Howeveer this is not the case for more aggressive types of
MS, where e.g. Bald’s sclerosis produces concentric plaque patterns. There-
fore it is fair to consider if a p high enough to create multiple small plaques
might be describing the more aggresive MS types, while a low p describes
the more common types of MS.
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6.3.3 Plaque Size Limit

The simulation starts with V,,, = 400 macrophages and with a stepsize of
400 macrophages iterates all the way up to N,,, = 6000 macrophages. The
simulation also starts with a positive feedback rate constant of p = 48 h™!
and with a stepsize of 5 h™! p grows until a sustained plaque formation
is found. The defective macrophage in the center of the grid has a source
term of S = 182 in all the simulations. All the macrophages were positioned

inside a circle of radius R = /N,,,/7 cells to ensure that the depleted zone

p=168 h™
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Figure 6.5: Temporal development of systems at various p along with initial cytokine
wave and stable chronic plaques.
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Figure 6.6: Results of plaque size simulations. (B) shows the minimum p needed for
Np,p macrophages to transition to the locked state. The dashed line at p = 128 h=!is
represented by some data points in (C), where the black dots are the ones that have
been illustrated in (A). Furthermore, we see from the figures (A+C) that given a fixed
p and a growing number of macrophages, the central plaque increases linearly.

didn’t emerge. The simulation ran for 60 hours with a stop of the source
term at 24 hours. Ensuring that the depleted zone didn’t emerge meant
that the entire plaque would get inflamed if plaque size was limitless.

Figure (A) shows the final state of four different simulations, and
shows that given a p there exists a critical number of macrophages, needed
for a transition into the locked state. Together with figure [6.6((C) it also
shows that increasing the number of macrophages above a critical value
just increases the plaque size, which proves definitively that the plaque
size is only bounded by macrophage depletion. This critical number of
macrophages is connected with the amount of cytokine produced by the
interior macrophages and the amount of cytokine lost by diffusion at the
boundary macrophages and by cytokine dilution or degradation. This is
also why a larger p means that a lower amount of macrophages are needed
to transition into the locked state, which is illustrated in figure (B).
From this figure we also find that the minimum p needed for locked state
transition, decreases towards a critical p, which is found by fitting the data
to an exponential decay to be p..; =~ 100.9. The asymptotic behaviour



58 6. SIMULATION RESULTS AND DISCUSSIONS

towards the critical p occurs because as the plaque increases in size, the
difference between the total production- and total loss of cytokines gets
larger. This can be understood by realizing that the area of the plaque
increases linearly with the number of macrophages, whilst the circumference
of the plaque only increases proportional to the square root of the number
of macrophages. Since the production of cytokines depends on the number
of macrophages we can define a production term as

P o« Np,pN (6.1)

where N is NF-xB. Irretrievable loss of cytokines only occurs for two rea-
sons. The first is the lifetime of the cytokine, and the second is the loss of
cytokines at the border of the plaque. The irretrievable loss of cytokines
from diffusion, will because of its square root dependence on the number
of macrophages have less significance in the total loss as the number of
macrophages grows very large. The loss from cytokine dilution or degrada-
tion is also proportional to the number of macrophages, and we can therefore
define a loss term as

I
L o< Nop— + V/ Nip DV 1T (6.2)
I

Furthermore, we know that a plaque that is chronically inflamed, is actually
in a steady-state, meaning N — N, and [ — I,,, and thus the net change
in cytokine levels per timestep should be zero. Putting these two terms
together, we end up with an equation that is very similar to the single
macrophage equation for % from section

oI
— xP-L=0 6.3
5 & (6.3)
ISS
NppPNos = Nopp—= + /Ny DV 1 (6.4)

T

Rewriting it as a function of p, we get:

1 DV? '\ I
=| =+ —== 6.5
p <TI A /Nmp) NSS ( )

When N, becomes very large, we can neglect the diffusion term giving us:

o [ss
NSSTI

p (6.6)
Which is essentially the equation (5.6). This shows that as the plaque
size grows, the critical p needed for exciting and sustaining a plaque grows
closer to the critical p for a single cell. This behaviour was also observed in
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Figure 6.7: The cytokine profile of a plaque of approximately 1900 macrophages.

[Holst-Hansen]. But as we see from the fitting the simulation results to an
exponential decay, the critical p from the simulations is almost twice as large
as the value found for a single cell and is about 18 h~! lower than the min-
imal p found in section [6.2.1] The reason the value is almost twice as large
as the one found analytically is most likely because the diffusion constant is
quite high, and we assumed that the production and loss of cytokines was
equal for every macrophage in the plaque. However, as we can see in figure
6.7 the cytokine profile doens’t have a sharp boundary, meaning that the
production and loss of cytokines isn’t the same for each macrophage. This
also means that we would need quite a lot more macrophages for the diffu-
sion term to be negligible. The reason that this p is slightly smaller than
the value found in section [6.2.1] can be because in this simulation we forced
the macrophages to be accumulated. In the other simulation, macrophages
were free to move about, and it took a slightly greater p to attract enough
macrophages to excite the system.

To sum up this section, we found that self-regulation was precipitated
by macrophage depletion. The depletion of macrophages was caused by the
central defective macrophage only attracting nearby macrophages. This
gave rise to a central plaque seperated from the rest of the macrophages
by a depleted zone. We also found out under the assumptions that cy-
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tokine production and loss is approximately equal for every macrophage
in a plaque, very large plaques effectively behave like a lossless single cell.
Furthermore, we found out that the size of the plaque is limited only by the
number of macrophages.

6.4 Resolving Plaques

Now we have seen how plaques can form into either one or multiple plaques,
which are self-sustaining. In this secion we want to analyse methods to
resolve these plaques by changing some of the variables of the system after
the onset of chronic inflammation. The simulations in this section will be
based on two ways of resolving plaques which were discussed in section[5.1.2]
The first will be to lower p and the second to lower kjy.

6.4.1 Lowering Cytokine Through p

The previous section investigated the instigation of plaque formation and
plaque self-regulation. Yet we haven’t investigated the stability of the
plaques which in itself is interesting for the sustainability of plaques and
for resolving them. Therefore we will in this section look into what the
minimum p needed to sustain an inflamed plaque. This will be done by
starting a system in an inflamed state at a fixed p and then lowering p by
a factor. If this resolves the plaque, we have found the critical value for
resolving plaques and if not a greater reduction in p is introduced.

The simulation was set up so that all the macrophages were located in a
single plaque. Since we are interested in how easily plaques are resolved as a
function of the free parameter p, each simulation was run for p € [100, 200]
h=!, and ran for t = 60 hours. After ¢t = 36 hours, the parameter p was
lowered by a factor z, where z € [0.51,0.99]. Each simulation was run four
times, and the resulting probability of the plaque not resolving can be seen
in figure 6.9 From figure we see the results of the simulations. The
r-axis is the p parameter, the y-axis is the factor we lower p by after the
onset of chronic inflammation, and the z-axis is the probability of staying in
the inflammatory state. As is very clear from the figure, resolving plaques
through inhibition of p is a very poor method. At the lowest p, which we
found in section to be p ~ 100 h™!, p needed to be lowered by at least
9% to resolve the plaque. Increasing p by 100 h™!, meant that not even
a reduction of 49%, would resolve the plaque. These results indicate that
plaques are very stable to changes in the p parameter, and that it takes a
great amount of inhibitor to resolve plaques with this method.
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Figure 6.8: Probability of resolving a plaque by lowering p by a factor = after the onset
of chronic inflammation. For p = 100 h™!, p needed to be lowerd by 9% if the plaque
was to be resolved, while a p = 200 h™!, couldn’t even be resolved by lowering p by 49%,
indicating that plaques are very stable to changes in p.

6.4.2 Inhibition of NF-xB Activation

The inhibition of NF-kB activation, was another simulation done to find a
method of resolving plaques. As was stated earlier, the study by [Staros-
som et al., [2012] showed that the inhibition of the NF-xB signaling pathway
resulted in resolving plaques. Therefore it would be natural to try to repro-
duce this behaviour by lowering the NF-£B positive rate constant k;y. The
simulation was started with D = 162 cells?/h and S = 182 h™!. Because
we are still interested in how p affects the lowering of k;y, the simulations
were done for p € [100,200] h=!. For each value p, kry was lowered by a
factor in the range x € [0.51,0.99] and each simulation was done four times.
From figure we see the results of the simulations. As in section [6.4.]]
the x-axis is the p parameter, and the z-axis is the probability of staying
in the inflammatory state. In this figure however, the y-axis represents the
factor we lower kry by, and not p. The figure clearly shows how easily a
plaque was resolved by lowering k;y. At p = 100 h™!, lowering k;x by 13%
ensured that the plaque would resolve, while there was a slight uncertainty
by only lowering it by 9%. Even increasing p by as much as 100 h™! only



62 6. SIMULATION RESULTS AND DISCUSSIONS

increased the factor we needed to lower kry by, with 8%. Comparing this
with the results of lowering p, this method is slightly worse when p is close
to the minimal p, but vastly better when p is greater than the minimal p,
indicating that it is a much better method of resolving inflammation than
lowering p.

We have in this chapter looked at how plaque formation happens. We
started out looking at how the various parameters D, S, p, and N,,, affected
the plaque size and found that increasing D, S, and N,,, didn’t change
the qualitative results, but merely scaled them. Using this information we
looked at how the formation of plaques depended on p, and showed that
only around the minimum p needed for excitation of the system into the
inflammatory state, would an isolated plaque form in the center. For higher
p, the system would settle into chronically inflammatory state with multiple
plaques. We then found out that plaques have no size limit, given enough
macrophages, and found the minimal p needed to excite a certain amount
of macrophages. Last but not least, we looked at methods of resolving
inflammation, either by lowering p or by lowering k;y, after the onset of
chronic inflammation. This showed that lowering k;y was a much more
effective way of resolving plaques than lowering p.

0.51

100

Figure 6.9: This figure shows the probability of plaques staying inflamed, at various
values of p, after ky is lowered by a factor x.
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Conclusion

“It’s more fun to arrive a conclusion than to justify it.”
— Malcolm Forbes

Multiple sclerosis is a demyelinating disease of the CNS, that currently
affects between 2 and 2.5 million people worldwide|[World Health Organiza-
tion et al., [2008]. The pathogenesis of multiple sclerosis is unknown, but it
involves macrophages removing myelin from healthy neurons and oligoden-
drocytes, resulting in the formation of plaques.

In this study, I used a previously developed model, with the addition
of cell motility, to model the inflammatory- and chemotactic process that
leads to plaque formation in MS. The inflammation was mediated by the
pro-inflammatory cytokines 1L-13, TNF-«, and IFN-v, which were acti-
vated through the NF-xB-complex. Activation of the inflammatory response
in macrophages was described by three coupled differential equations and
macrophage-macrophage coupling is achieved through cytokine diffusion.
The addition of macrophage motility, a novelty in this study, was modeled
as a directed random walker, with a cytokine recycling timer Tgecycre, Where
macrophages moved randomly, when not registering cytokines. However,
when registering significant levels of cytokines in one of the eight possi-
ble directions in the Moore neighborhood, it would move in this direction
for Treeyete = 20-30 minutes. The combination of inflammatory response
and chemotactic movement means that the model is essentially a three-
component motile excitable media. Through a mathematical analyses, it
was shown that a single macrophage exhibited three distinct types of be-
haviour, non-excited, oscillatory, and excited. These behaviours were shown
to be highly dependent on the choice of p and S, which were the rate of
cytokines production and a basic cytokine production.
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Applying the model to a system of macrophages placed on a two dimen-
sional quadratic grid made it possible to simulate the complex processes
of inflammation and chemotaxis. Through a parameter evaluation of p, S
and D, it was shown that keeping S and D approximately equal, led to the
same qualitative results when increasing them. This allowed us to chose
fixed values of these for the rest of the simulations. To control system be-
haviour, the parameter p was free and chosen in the simulations based on
the qualitative results.

Multiple sclerosis plaques are in the most common forms of MS of lim-
ited size which means something is limiting them. Simulations of lumped
macrophages showed that the plaque size could be as large as the number
of macrophages. However through simulations of a system of uniformly dis-
tributed macrophages for specific values of p, S and D, it was shown that
plaque size limit is a naturally occurring phenomenon in the model. The
limiting factor being a macrophage depleted zone, creating a gap between
the plaque and the rest of the macrophages in the system. The isolating
effect of the chemotactic process which results in a chronically inflamed
central plaque, actually prevents inflammation from spreading to the rest
of the system.

Resolving plaques has been attempted using GAL1, which inhibits the
phosphorylation of IxB, thus blocking the production of active NF-xB [Staros-
som et al} 2012]. Simulations mimicking the experiment showed that low-
ering the positive feedback from cytokines on NF-xB, effectively resolved
plaques when the feedback parameter got low enough. Resolving plaques
by lowering p after a chronic inflammatory state had formed, also resulted
in resolving the plaques after reaching a critical level, but less effectively
than intervening with NF-xB activation.
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Outlook

Throughout the development of the motile NF-xB model, and its application
to the CNS, there have been a number of assumptions and simplifications.
These allowed us to analyse a simpler system, than if we had looked at the
system as a whole. However, addition of some of the cell types that we dis-
carded could be of great interest, since there are many additional cell types
we could implement, giving rise to new exciting interactions and dynamics.

In this last chapter I will describe some of the cells that could be rein-
troduced to the model as well as what implementing them might result in.
Furthermore, I will describe how modifying the NF-xB model could be done
and why it could be of interest.

8.1 Oligodendrocytes

The removal of myelin and death of oligodendrocytes leads to non-recovering
areas in the brain filled with scars called plaques. In the model, the de- and
remyelination phase was disregarded, but introducing them to the model
could be an interesting improvement. This was somewhat attempted early
on in the study, but wasn’t fully developed. Initially simulations showed
interesting patterns, but it would need much greater study to conclude any-
thing (see figure . Implementing oligodendrocytes could be interesting
from a modeling point of view, because the removal of oligodendrocytes
could act pro-inflammatory, while a complete removal of the oligodendro-
cytes would result in a non-recovering site. In the current model, if the
system gets fixed in a chronically inflamed state, the only way of alleviating
this, is to either remove macrophages from the system, or to reduce some of
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the parameters, as was shown in section [6.4 If however, oligodendrocytes
were a part of the model, de- and remyelination could be analysed.

t1 t2 t3

Figure 8.1: Model with additional oligodendrocytes added to the grid. The whiter
the area the more dead oligodendrocytes. The six images are frames of a movie with
the upper left corner is ¢ = 1 hour after simulations start, and the lower right corner is
t = 25 hours after simulation start.

8.2 M2 Macrophages

The study by [Vereyken et al. 2011] showed that M2 macrophages actu-
ally moved faster towards a pro-inflammatory signal than M1 macrophages.
The anti-inflammatory reactions of the M2 macrophages, are required for a
demyelinated area to recover. Introducing M2 macrophages to the system,
with their own anti-inflammatory cytokines, which promote their own prolif-
eration and inhibit M1 differentiation, could introduce some very interesting
dynamics. This might affect the size of the plaques. This might limit their
growth by enclosing pro-inflammatory macrophages, effectively inhibiting
the inflammatory response from spreading to the rest of the system. It
might also make the plaques larger, as a plaque consisting of 10% (just a
random number) M2 macrophages would require more M1 macrophages to
sustain a chronic inflammation.
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8.3 Phenotype Switch

The study by |[Boven et al., |2006] showed that myelin-laden macrophages,
called foam-cells — pro-inflammatory macrophages who have ingested large
amounts of myelin — become anti-inflammatory. Implementing this in the
model would require the implementation of myelin to the system as well as
a myelin ingestion rate and degradation rate. This could be implemented
in the same manner as the receptor movement model, where macrophages
can ingest 1 unit of myelin, after which it needs Tpeyour time to degrade the
myelin. This could be implemented on its own or in combination with the
addition of oligodendrocytes.

8.4 Arginine

Macrophages require the uptake of the exogenous amino acid arginine to sat-
isfy its metabolic demands. Depending on the intracellular availability of
this amino acid it is essential for the macrophages’ synthesis of proteins and
production nitric oxides[Comalada et al., 2012]. The addition of arginine
could be implemented in the model as a resource for cytokine production,
effectively limiting this production. Therefore including extra- and intra-
cellular arginine to the model and making cytokine production a function
of intracellular arginine, could be very interesting.
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Code

On the bottom of this page, you’ll find an attached CD, with code. The
simulations of the model is written in C++4, and running it will produce
data in the form of text files, which will be zipped into a folder, collecting
the data. To generate movies of the simulation, and to do data analyses
on the simulation results, Python scripts were written. For convenience,
the CD will include a folder in which the most interesting simulations were
made into movies. For those of you reading this in a digital format, the
code is publicly available on my Dropbowx.


https://www.dropbox.com/sh/aps8jdz8i4yexil/AAD4_EDUK7NxdhgpqDH4QZnXa?dl=0
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